CHEN Xiaolan, SHENG Zhicun, CHEN Haifeng, et al. Antioxidant Activity in Vitro and Vivo of Polysaccharide from Paulownia fortunei Flower[J]. Science and Technology of Food Industry, 2021, 42(7): 349−353. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020050373.
Citation: CHEN Xiaolan, SHENG Zhicun, CHEN Haifeng, et al. Antioxidant Activity in Vitro and Vivo of Polysaccharide from Paulownia fortunei Flower[J]. Science and Technology of Food Industry, 2021, 42(7): 349−353. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020050373.

Antioxidant Activity in Vitro and Vivo of Polysaccharide from Paulownia fortunei Flower

More Information
  • Received Date: May 31, 2020
  • Available Online: January 27, 2021
  • This study aimed at evaluating the antioxidant activity in vitro and vivo of polysaccharide prepared from Paulownia fortunei flower by water extract-alcohol precipitation. In vitro, results showed that Paulownia fortunei flower polysaccharide had a dose-dependent and good effect on scavenging superoxide anion, hydroxyl radical and inhibiting H2O2 hemolysis. When the concentration of polysaccharide controlled at 0.5 mg/mL, the scavenging rates of superoxide anion and hydroxyl radical were 54.36% and 74.62% respectively, with more than half effect of 50%. When at 2 mg/mL, the anti-H2O2 oxidation hemolysis rate was higher than that of the positive control Vc group (1 mg/mL). In vivo, after the experimental mice were administered to oral gavage with Paulownia flower polysaccharide at low, medium and high dosages (5, 10 and 20 mg/mL, 0.2 mL) for 28 consecutive days. The result showed that Paulownia fortunei flower polysaccharide had no effect on weight of mice; different doses of polysaccharide could enhance or siginificantly enhance the content of superoxide dismutase (SOD), glutathione (GSH), total antioxidant capacity (T-AOC) remarkably in serum, heart, liver, kidney, ileum (P<0.05) when compared with that of the blank group, and reduce the malondialdehyde (MDA) content dramatically with a certain concentration-response relationship. The results indicate that Paulownia fortunei flower polysaccharide had perfect antioxidant activity and could be used as a natural antioxidant in food and medicine industry.
  • [1]
    中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1979, 67(2): 28.
    [2]
    钱建中, 张雨梅, 丁丽军. 泡桐花的活性成分及其药理作用综述[J]. 江苏农业科学,2013,41(5):7−9. doi: 10.3969/j.issn.1002-1302.2013.05.003
    [3]
    Zhang J K, Li M, Li M, et al. Four C -geranyl flavonoids from the flowers of studies on the constituents of flowers. VIII. On the components of the flower of Paulownia tomentosa STEUDEL and their anti-inflammatory activity[J]. Natural Product Research,2019,2:1−10.
    [4]
    王婷. 兰考泡桐花活性成分研究[D]. 兰州: 兰州大学, 2015:58.
    [5]
    Wang Q J, Meng X Y, Zhu L, et al. A polysaccharide found in Paulownia fortunei flowers can enhance cellular and humoral immunity in chickens[J]. International Journal of Biological Macromolecules,2019,130:213−219. doi: 10.1016/j.ijbiomac.2019.01.168
    [6]
    Kurihara T, Kikuchi M. Studies on the constituents of flowers. VIII. On the components of the flower of Paulownia tomentosa STEUDEL[J]. Yakugaku Zasshi,1978,98(4):541−544. doi: 10.1248/yakushi1947.98.4_541
    [7]
    崔令军, 王保平, 乔杰, 等. 泡桐花营养成分分析评价[J]. 食品工业科技,2014,35(24):338−341.
    [8]
    张青青. 泡桐花总黄酮提取工艺的研究[D]. 杨凌: 西北农林科技大学, 2014:33.
    [9]
    Chen J, Liu Y, Shi Y P. Determination of flavonoids in the flowers of Paulownia tomentosa by high-performance liquid chromatography[J]. Journal of Analytical Chemistry,2009,64(3):282−288. doi: 10.1134/S1061934809030137
    [10]
    张苏倩. 泡桐花黄酮对小鼠免疫功能的影响[D]. 杨凌: 西北农林科技大学, 2014:25.
    [11]
    Yang H F, Zhang P, Xu X Z, et al. The enhanced immunological activity of Paulownia tomentosa flower polysaccharide on Newcastle disease vaccine in chicken[J]. Bioscience Reports,2019,39(5):1−9.
    [12]
    圣志存, 吴双, 王安平, 等. 珊瑚菌子实体和菌丝体营养成分与抗氧化活性的比较[J]. 现代食品科技,2018,34(5):62−67, 40.
    [13]
    聂琳然, 郝利民, 王滔滔, 等. 不同来源红缘拟层孔菌粗多糖的抗氧化活性[J]. 食品科学,2019,40(19):60−68. doi: 10.7506/spkx1002-6630-20190329-381
    [14]
    Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
    [15]
    Hao L M, Sheng Z C, Lu J K, et al. Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola[J]. Carbohydrate Polymers,2016,141(6):54−59.
    [16]
    刘薇, 刘雯佳, 刘彦霞, 等. 邻二氮菲-Fe3+法测定保健食品中水溶性成分的抗氧化能力[J]. 食品科学,2011,32(16):261−264.
    [17]
    Denham H. Aging: A theory based on free radical and radiation chemistry[J]. Journal of Gerontology,1956,11(3):298−300. doi: 10.1093/geronj/11.3.298
    [18]
    Vanessa S D O, Ivanilda M A, Marcos V D C B, et al. Aroeira fruit (Schinus terebinthifolius Raddi) as a natural antioxidant: Chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity[J]. Food Chemistry,2020,31:12764.
    [19]
    朴香兰. 常见天然抗氧化物质研究[M]. 北京: 中央民族大学出版社, 2008: 1−4.
    [20]
    圣志存, 郝利民, 陶如玉, 等. 红缘拟层孔菌发酵物体外抗氧化活性研究[J]. 食品工业科技,2014,35(13):129−133.
    [21]
    赵建, 李想, 鲁政, 等. 影响超氧化物歧化酶活性测定的因素[J]. 食品科学,2010(9):216−218.
    [22]
    刘梦杰, 王飞, 张燕, 等. 黄芩多糖的体内抗氧化活性[J]. 中国食品学报,2016,16(7):52−58.
    [23]
    梁勇, 陈月星, 赵丽那, 等. 硒酸钠对不同麦类作物谷胱甘肽过氧化物酶活性的影响[J]. 西南农业学报,2017,30(7):1511−1515.
    [24]
    张吉. 谷胱甘肽及其酶系统与6-OHDA氧化损伤的相关性研究[D]. 南京: 南京医科大学, 2005:68.
    [25]
    周麟依, 孙玉凤, 吴非. 丙二醛氧化对米糠蛋白结构及功能性质的影响[J]. 食品科学,2019,40(12):98−107. doi: 10.7506/spkx1002-6630-20180528-392
    [26]
    Bartolome B, Davalos A, Lopez F R, et al. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis[J]. Journal of Food Protection,2004,67(9):1939−1944. doi: 10.4315/0362-028X-67.9.1939
    [27]
    贾曼, 陈华, 陈际达, 等. 糖自氧化及抗氧化剂对其抑制作用的研究进展[J]. 化学通报,2013,76(3):231−237.
    [28]
    吕双双, 李书国. 植物源天然食品抗氧化剂及其应用的研究[J]. 粮油食品科技,2013,21(5):60−65. doi: 10.3969/j.issn.1007-7561.2013.05.016
    [29]
    林谦, 邱磊, 云龙, 等. 核因子E2相关因子2调控机体抗氧化途径特性及其与畜禽的健康和肉品质的关系[J]. 动物营养学报,2014,26(6):1421−1429. doi: 10.3969/j.issn.1006-267x.2014.06.001
    [30]
    明建华, 叶金云, 张易祥, 等. 姜黄素对草鱼生长性能、抗氧化应激能力及核因子E2相关因子2/抗氧化反应元件信号通路相关基因表达的影响[J]. 动物营养学报,2019,31(2):809−823. doi: 10.3969/j.issn.1006-267x.2019.02.037
  • Cited by

    Periodical cited type(12)

    1. 赵星,张嘉楠,张一鸣,金欣欣,苏俏,宋亚辉,李玉荣,王瑾. 花生籽仁蔗糖含量近红外光谱快速测定方法研究. 中国油料作物学报. 2025(01): 226-233 .
    2. 魏松丽,张丽霞,孙强,芦鑫,靳淑秀,孙晓静,金璐,游静,黄纪念. 真空干燥花生油体的条件优化及性质表征. 河南工业大学学报(自然科学版). 2024(01): 8-16 .
    3. 张亚靖,陈复生,王颖颖,刘晨,郑乾坤,殷丽君. 油脂体的提取方法及其在食品中应用的研究进展. 中国油脂. 2024(08): 131-136 .
    4. 单子明,彭郁,秦琛强,傅娆,李茉,倪元颖,温馨. 植物油脂体提取及稳定性评价研究进展. 食品科学. 2024(19): 19251-19262 .
    5. 忠梦,刘白宁,华威,王锋,荣瑞芬,段玉权. 不同包装核桃仁氧化机制分析. 食品科学. 2024(20): 65-73 .
    6. 尹国友,杨卓凡,曾姣,张莹莹,孙婕,王召. 大豆油体包埋韭菜籽油微胶囊工艺优化及其稳定性评价. 食品科技. 2024(11): 267-275 .
    7. 李天赐,陈毅保,刘昆仑,陈复生,杨趁仙,段晓杰,朱婷伟. 界面蛋白对水酶法提取植物油脂过程中乳状液稳定性影响的研究进展. 食品科学. 2023(17): 188-195 .
    8. 王广婕,赵焕宇,苏成成,韦旋,吴梦果,单迪,黄萍,马佳歌,侯俊财,姜瞻梅. 油脂体的组成、结构及氧化稳定性研究进展. 食品科学. 2023(21): 293-302 .
    9. 官梦姝,冯雪,刘月,朱秀清,姜瞻梅,江连洲,侯俊财. 3种天然酚类物质对大豆油脂体稳定性及体外消化性的影响. 食品科学. 2022(03): 10-18 .
    10. 秦晓鹏,黄沙沙,聂成镇,禹晓,邓乾春,相启森,朱莹莹. 微波处理对萌动亚麻籽酚类化合物油相迁移的影响. 食品科学技术学报. 2022(03): 124-136 .
    11. 汪锦,应瑞峰,王耀松,黄梅桂. 超声-水酶法对高品质薄壳山核桃油释放的影响. 食品与发酵工业. 2022(18): 177-182 .
    12. 刘子豪,梅雅欣,彭郁,傅娆,秦琛强,倪元颖,温馨. 外源蛋白对大豆油脂体稳定性的影响. 食品科学. 2022(22): 1-9 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (246) PDF downloads (34) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return