ZHU Kun, KONG Jing, RONG Lanxin, et al. Research Progress in Microbial Metabolic Engineering for Producing Monoterpene Aroma Products[J]. Science and Technology of Food Industry, 2021, 42(7): 390−398. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020050361.
Citation: ZHU Kun, KONG Jing, RONG Lanxin, et al. Research Progress in Microbial Metabolic Engineering for Producing Monoterpene Aroma Products[J]. Science and Technology of Food Industry, 2021, 42(7): 390−398. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020050361.

Research Progress in Microbial Metabolic Engineering for Producing Monoterpene Aroma Products

More Information
  • Received Date: May 31, 2020
  • Available Online: January 27, 2021
  • Monoterpenes are an important class of plant natural products that exhibit a broad range of biological activities. Some monoterpenes and related derivatives have shown great potential for various industrial applications (e.g., one of the world’s most commonly used flavour and fragrance additives in foods, medicines and cosmetics), which lead to an increasing market demand for them. However, the low abundance or yield of most monoterpenes and derivatives in plants renders their isolation from plant sources non-economically viable. To meet the rapidly rising market demand for monoterpenes and derivatives, producing them by engineering microbial cells into microbial factories is becoming an attractive alternative approach which can overcome the aforementioned bottleneck, making it more sustainable and environmentally friendly. In recent years, these value-added products have successfully been obtained using metabolically engineered microbes. Here the latest examples of biosynthesis of monoterpene aroma products in the engineered microbes are reviewed . Furthermore, the current bottleneck issues and potential solutions are discussed. It is believed that the information provided here will make a significant contribution to further advancement of the microbial production of monoterpene aroma products through metabolic engineering.
  • [1]
    Aguilar S R, Stülke J, Dijl J M V. Less is more: Toward a genome-reduced Bacillus cell factory for ‘Difficult proteins’[J]. ACS Synthetic Biology,2019,8(1):99−108. doi: 10.1021/acssynbio.8b00342
    [2]
    Jiang G Z, Yao M D, Wang Y, et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae[J]. Metabolic Engineering,2017,41:57−66. doi: 10.1016/j.ymben.2017.03.005
    [3]
    Wu J, Cheng S, Cao J, et al. Systematic optimization of limonene production in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2019,67(25):7087−7097. doi: 10.1021/acs.jafc.9b01427
    [4]
    Ciriminna R, Lomeli-Rodriguez M, Demma Carà P, et al. Limonene: A versatile chemical of the bioeconomy[J]. Chemical Communications,2014,50(97):15288−15296. doi: 10.1039/C4CC06147K
    [5]
    Tracy N I, Chen D C, Crunkleton D W, et al. Hydrogenated monoterpenes as diesel fuel additives[J]. Fuel,2009,88(11):2238−2240. doi: 10.1016/j.fuel.2009.02.002
    [6]
    任建峰, 张其胜, 王慧. 紫苏醇对结肠癌SW480细胞凋亡的影响及其机制研究[J]. 肿瘤药学,2019,9(3):396−400.
    [7]
    Arunachalam K, Ramar M, Ramanathan S, et al. In vivo protective effect of geraniol on colonization of Staphylococcusepidermidis in rat jugular vein catheter model[J]. Pathogens and Disease,2018,76(5):fty055. doi: 10.1093/femspd/fty055
    [8]
    Alves S, Duarte A, Sousa S, et al. Study of the major essential oil compounds of Coriandrum sativum against Acinetobacter baumannii and the effect of linalool on adhesion, biofilms and quorum sensing[J]. Biofouling,2016,32(1−2):155−165.
    [9]
    Lee S C, Wang S Y, Li C C, et al. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice[J]. Journal of Food and Drug Analysis,2018,26(1):211−220. doi: 10.1016/j.jfda.2017.03.006
    [10]
    Lee B K, Jung A N, Jung Y S. Linalool ameliorates memory loss and behavioral impairment induced by REM-Sleep deprivation through the serotonergic pathway[J]. Biomolecules Therapeutics,2018,26(4):368−373. doi: 10.4062/biomolther.2018.081
    [11]
    庞亚如, 胡智慧, 肖冬光, 等. 柠檬烯和红没药烯的微生物代谢工程[J]. 生物工程学报,2018,34(1):34−43.
    [12]
    Hu Z H, Tang B, Wu Q, et al. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium 'Siberia' and unscented Lilium 'Novano'[J]. Frontiers in Plant Science,2017,8:1351. doi: 10.3389/fpls.2017.01351
    [13]
    Frank A, Groll M. The methylerythritol phosphate pathway to isoprenoids[J]. Chemical Reviews,2017,117(8):5675−5703. doi: 10.1021/acs.chemrev.6b00537
    [14]
    Liao P, Hemmerlin A, Bach T J, et al. The potential of the mevalonate pathway for enhanced isoprenoid production[J]. Biotechnology Advances,2016,34(5):697−713. doi: 10.1016/j.biotechadv.2016.03.005
    [15]
    Jozwiak A, Lipko A, Kania M, et al. Modeling of dolichol mass spectra isotopic envelopes as a tool to monitor isoprenoid biosynthesis[J]. Plant Physiology,2017,174(2):857−874. doi: 10.1104/pp.17.00036
    [16]
    Cao X, Wei L J, Lin J Y, et al. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology,2017,245(Part B):1641−1644.
    [17]
    Pang Y, Zhao Y, Li S L, et al. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil[J]. Biotechnology for Biofuels,2019,12(1):241. doi: 10.1186/s13068-019-1580-y
    [18]
    Zhang Y, Wang J, Cao X, et al. High-level production of linalool by engineered Saccharomyces cerevisiae harboring dual mevalonate pathways in mitochondria and cytoplasm[J]. Enzyme and Microbial Technology,2020,134:109462. doi: 10.1016/j.enzmictec.2019.109462
    [19]
    Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization[J]. Archives of Biochemistry and Biophysics,2002,405(1):130−136. doi: 10.1016/S0003-9861(02)00335-1
    [20]
    Aonso-Gutierrez J, Chan R, Batth T S, et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production[J]. Metabolic Engineering,2013,19:33−41. doi: 10.1016/j.ymben.2013.05.004
    [21]
    Liu W, Xu X, Zhang R, et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture[J]. Biotechnol for Biofuels,2016,9:58. doi: 10.1186/s13068-016-0466-5
    [22]
    Cheng B Q, Wei L J, Lv Y B, et al. Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition[J]. Biotechnology and Bioprocess Engineering,2019,24(3):500−506. doi: 10.1007/s12257-018-0497-9
    [23]
    Jongedijk E, Cankar K, Ranzijn J, et al. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae[J]. Yeast,2015,32(1):159−171.
    [24]
    Belletti N, Kamdem S S, Tabanelli G, et al. Modeling of combined effects of citral, linalool and beta-pinene used against Saccharomyces cerevisiae in citrus-based beverages subjected to a mild heat treatment[J]. International Journal of Food Microbiology,2010,136(3):283−289. doi: 10.1016/j.ijfoodmicro.2009.10.030
    [25]
    Saharan R K, Sharma S C. Effects of glutathione modulation on oxidative stress and enzymatic antioxidant defence in yeast Pachysolen tannophilus[J]. Current Microbiology,2011,62(3):944−949. doi: 10.1007/s00284-010-9808-x
    [26]
    王诗语, 王鹤蓉, 黄子豪, 等. 利用基因工程改造的大肠杆菌合成蒎烯[J]. 生物技术通讯,2019,30(4):455−463. doi: 10.3969/j.issn.1009-0002.2019.04.001
    [27]
    Zada B, Wang C, Park J B, et al. Metabolic engineering of Escherichia coli for production of mixed isoprenoid alcohols and their derivatives[J]. Biotechnology for Biofuels,2018,11:210. doi: 10.1186/s13068-018-1210-0
    [28]
    Krivoruchko A, Nielsen J. Production of natural products through metabolic engineering of Saccharomyces cerevisiae[J]. Current Opinion in Biotechnology,2015,35:7−15. doi: 10.1016/j.copbio.2014.12.004
    [29]
    Jin C C, Zhang J L, Song H, et al. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering[J]. Microbial Cell Factories,2019,18:77. doi: 10.1186/s12934-019-1127-8
    [30]
    Spagnuolo M, Shabbir H M, Gambill L, et al. Alternative substrate metabolism in Yarrowia lipolytica[J]. Frontiers in Microbiology,2018,9:1077. doi: 10.3389/fmicb.2018.01077
    [31]
    Formighieri C, Melis A. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria)[J]. Metabolic Engineering,2015,32:116−124. doi: 10.1016/j.ymben.2015.09.010
    [32]
    Shabestary K, Anfelt J, Ljungqvist E, et al. Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria[J]. ACS Synthetic Biology,2018,7(7):1669−1675. doi: 10.1021/acssynbio.8b00056
    [33]
    林章凛, 张艳, 王胥, 等. 合成生物学研究进展[J]. 化工学报,2015,66(8):2863−2871.
    [34]
    Lv X, Xie W, Lu W, et al. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy[J]. Journal of Biotechnology,2014,186:128−136. doi: 10.1016/j.jbiotec.2014.06.024
    [35]
    Hirokawa Y, Kubo T, Soma Y, et al. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942[J]. Metabolic Engineering,2020,57:23−30. doi: 10.1016/j.ymben.2019.07.012
    [36]
    Webb J P, Arnold S A, Baxter S, et al. Efficient bio-production of citramalate using an engineered Escherichia coli strain[J]. Microbiology,2018,164(2):133−141. doi: 10.1099/mic.0.000581
    [37]
    Wadhwa M, Srinivasan S, Bachhawat AK, et al. Role of phosphate limitation and pyruvate decarboxylase in rewiring of the metabolic network for increasing flux towards isoprenoid pathway in a TATA binding protein mutant of Saccharomyces cerevisiae[J]. Microbial Cell Factories,2018,17(1):152. doi: 10.1186/s12934-018-1000-1
    [38]
    Deng Y, Sun M, Xu S, et al. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae[J]. Journal of Applied Microbiology,2016,121(1):187−195. doi: 10.1111/jam.13105
    [39]
    Liu G S, Li T, Zhou W, et al. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction[J]. Metabolic Engineering,2020,57:151−161. doi: 10.1016/j.ymben.2019.11.001
    [40]
    Gu H, Zhu Y, Peng Y, et al. Physiological mechanism of improved tolerance of Saccharomyces cerevisiae to lignin-derived phenolic acids in lignocellulosic ethanol fermentation by short-term adaptation[J]. Biotechnology for Biofuels,2019,12(1):268. doi: 10.1186/s13068-019-1610-9
    [41]
    Zhang L, Xiao W H, Wang Y, et al. Chassis and key enzymes engineering for monoterpenes production[J]. Biotechnology Advances,2017,35(8):1022−1031. doi: 10.1016/j.biotechadv.2017.09.002
    [42]
    Weber W, Daoud-El Baba M, Fussenegger M. Synthetic ecosystems based on airborne inter- and intrakingdom communication[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(25):10435−10440. doi: 10.1073/pnas.0701382104
    [43]
    Minami H, Kim J S, Ikezawa N, et al. Microbial production of plant benzylisoquinoline alkaloids[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(21):7393−7398. doi: 10.1073/pnas.0802981105
    [44]
    Ward V C A, Chatzivasileiou A O, Stephanopoulos G. Cell free biosynthesis of isoprenoids from isopentenol[J]. Biotechnology and Bioengineering,2019,116(12):3269−3281. doi: 10.1002/bit.27146
  • Cited by

    Periodical cited type(26)

    1. 郭莉滨. “双碳”和“健康中国”背景下植物基肉制品的营养组分及健康功能性研究进展. 食品安全质量检测学报. 2025(03): 123-129 .
    2. 陈金换,安红周,孙嘉瑜,张皓冰,黄泽华. 植物蛋白的改性加工及热点应用领域研究进展. 粮油食品科技. 2025(02): 83-89 .
    3. 王庆沛,宇光海,廖爱美,潘龙,黄继红. 微生物合成血红蛋白的研究进展及其在食品中的应用. 中国调味品. 2024(01): 189-197 .
    4. 王彦丽,刘萌,朱来景,赵祥忠. 辣椒添加对植物蛋白肉感官特性的影响. 中国调味品. 2024(03): 28-32 .
    5. 刘静,金娜,石春芹,李永双,邓清升,罗旋飞,刘艳,杨宝君,聂龙. 响应面法优化豌豆蛋白植物肉配方及其体外消化分析. 食品工业科技. 2024(08): 216-226 . 本站查看
    6. 芦鑫,路风银,孙强,宋国辉,黄纪念. 植物蛋白肉感官品质与营养安全研究进展. 粮食与油脂. 2024(06): 6-10 .
    7. 俎新宇,赵亚男,王新新,杨进洁,边文洁,赵祥忠,梁艳. DHA藻油微胶囊粉对植物蛋白肉品质特性的影响. 食品研究与开发. 2024(14): 23-29 .
    8. 周鑫,马宁,王鑫,王恰,刘业学,田晓静,王稳航. 大豆组织蛋白发酵产品的体外消化特性. 食品研究与开发. 2024(17): 59-65 .
    9. 麻梦寒,冯朵,李梦洁,李琥,郭丽萍,王靖. 植物基食品加工技术、营养成分及其对不同人群的影响研究进展. 食品安全质量检测学报. 2024(18): 123-130 .
    10. 郭志伟,杨进洁,边文洁,赵祥忠,王晨莹. 酵母抽提物对植物蛋白肉品质的影响. 食品研究与开发. 2024(22): 9-14 .
    11. 葛志优,王羽,高艳娥,蔡维. 植物蛋白肉超声振动3D打印方法与试验. 农业工程学报. 2024(20): 259-268 .
    12. 王谊,陈志娜,尹琳琳,卞楠月,叶韬,陆剑锋. 豌豆蛋白粉添加量对低规格克氏原螯虾肉糜凝胶品质的影响. 廊坊师范学院学报(自然科学版). 2024(04): 56-62 .
    13. 刘萌,王聪睿,刘波,赵祥忠. 豇豆血红蛋白Lb Ⅱ在大肠杆菌中的重组表达条件优化、纯化与鉴定. 食品工业科技. 2023(04): 163-170 . 本站查看
    14. 樊炯,马骏骅,颜金鑫,张慧恩,杨华. 冷藏温度对植物基培根品质的影响. 食品与机械. 2023(05): 115-118+131 .
    15. 孙莹,王龙,朱秀清,江连洲. 植物基蛋白肉的研究现状与挑战. 食品工业科技. 2023(17): 438-446 . 本站查看
    16. 蔡维,王羽,高艳娥,李丽. 植物蛋白肉3D打印工艺参数优化. 农业工程学报. 2023(12): 254-264 .
    17. 刘浩栋,张金闯,陈琼玲,张玉洁,李同庆,王强. 植物基肉制品营养品质研究现状. 中国食品学报. 2023(08): 428-439 .
    18. 李振,相海,赵有斌,宋健宇,张德程,梁昊,张艺潇. 植物蛋白螺杆挤压组织化技术的研究进展. 中国油脂. 2023(09): 67-74 .
    19. 陶相锦,黄立强,王冬玲,马文平,马世岷. 植物蛋白肉生产的关键因素分析. 食品安全导刊. 2023(30): 160-162 .
    20. 佟宗航,李亚敏,高昂,谢赫然,高子凡,邢竹青. 植物蛋白肉产品品质评价及过敏原分析. 食品工业科技. 2022(04): 387-395 . 本站查看
    21. 臧学丽,黄志远,叶春民. 高斯软件模拟转谷氨酰胺酶交联大豆分离蛋白机理的研究. 高分子通报. 2022(10): 108-119 .
    22. 袁丽,孔云菲,贾世亮,石彤,励建荣,包玉龙,高瑞昌. 植物蛋白在动物肉糜类制品中的应用现状及研究进展. 肉类研究. 2022(10): 43-50 .
    23. 豆康宁,赵永敢,金少举,李超敏,邓同兴,赵志军. 植物基肉制品的研究进展. 食品与机械. 2022(11): 230-235 .
    24. 李家磊,管立军,高扬,严松,王崑仑,王春丽,李晓娟,卢淑雯,李波,周野. 液熏高水分挤压组织化植物蛋白加工工艺优化. 中国食品学报. 2022(11): 214-227 .
    25. 高智利,杨军飞. 植物蛋白肉的研究进展与发展趋势. 食品安全导刊. 2021(12): 184-186 .
    26. 周亚楠,王淑敏,马小清,缪松,卢旭. 植物基人造肉的营养特性与食用安全性. 食品安全质量检测学报. 2021(11): 4402-4410 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (539) PDF downloads (65) Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return