Citation: | LV Zhenzhen, LIU Hui, ZHANG Chunling, et al. Effects of 1-Methylcyclopropene and Different Ambient Temperature on Firmness and Cell Wall Pectin in Postharvest Nectarine[J]. Science and Technology of Food Industry, 2021, 42(7): 317−323. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050347. |
[1] |
汪祖华, 庄恩. 中国果树志.桃卷[M]. 北京: 中国林业出版社, 2001.
|
[2] |
Zhang W L, Zhao H D, Zhang J, et al. Different molecular weights chitosan coatings delay the senescence of postharvest nectarine fruit in relation to changes of redox state and respiratory pathway metabolism[J]. Food Chemistry,2019,289:160−168. doi: 10.1016/j.foodchem.2019.03.047
|
[3] |
Anurag P, Nagendra N M, Ana L S C, et al. Biochemistry of fruit softening: An overview[J]. Physiology and Molecular Biology of Plants,2009,15(2):103−113. doi: 10.1007/s12298-009-0012-z
|
[4] |
Sinath C, Duk J Y, Junhyung P, et al. Fruit softening correlates with enzymatic and compositional changes in fruit cell wall during ripening in ‘Bluecrop’ high bush blueberries[J]. Scientia Horticulturae,2019,245:163−170. doi: 10.1016/j.scienta.2018.10.019
|
[5] |
Jin C H, Suo B, Kan J, et al. Changes in cell wall polysaccharide of harvested peach fruit during storage[J]. Plant Physiology and Molecular Biology,2006,32(6):657−664.
|
[6] |
Catherine M G C R, Ginies C. Comparison of the cell wall composition for flesh and skin from five different plums[J]. Food Chemistry,2009,114:1042−1049. doi: 10.1016/j.foodchem.2008.10.073
|
[7] |
李红卫, 韩涛, 晋彭辉, 等. 冬枣后熟软化过程中细胞壁多糖降解特性的研究[J]. 中国食品学报,2014,14(2):109−117.
|
[8] |
何俊瑜, 任艳芳, 陈元有, 等. 一氧化氮对常温贮藏下芒果果实软化和细胞壁代谢的影响[J]. 食品工业科技,2018,39(17):269−275.
|
[9] |
Chen H J, Cao S F, Fang X J, et al. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage[J]. Scientia Horticulturae,2015,188:44−48. doi: 10.1016/j.scienta.2015.03.018
|
[10] |
Kan J, Liu J, Jin C H. Changes in cell walls during fruit ripening in Chinese Honey peach[J]. The Journal of Horticultural Science and Biotechnology, 2013, 88 (1): 37-46.
|
[11] |
赵心语, 李卉, 李建龙. 凤凰水蜜桃采后低温冷藏优势保鲜方法的对比研究[J]. 天津农业科学,2015,21(3):1−7. doi: 10.3969/j.issn.1006-6500.2015.03.001
|
[12] |
Zhao H D, Jiao W X, Cui K B, et al. Near-freezing temperature storage enhances chilling tolerance in nectarine fruit through its regulation of soluble sugars and energy metabolism[J]. Food Chemistry,2019,289:426−435. doi: 10.1016/j.foodchem.2019.03.088
|
[13] |
Sisler E C, Serek M. Inhibitor of ethylene response in plants at the receptor level: Recent development[J]. Plant Physiology,1997,100:577−582. doi: 10.1111/j.1399-3054.1997.tb03063.x
|
[14] |
Fabio R T, Auri B, Rogerio D O A, et al. Effect of dynamic controlled atmosphere monitored by respiratory quotient and 1-methylcyclopropene on the metabolism and quality of ‘Galaxy’ apple harvested at three maturity stages[J]. Food Chemistry,2017,222:84−93. doi: 10.1016/j.foodchem.2016.12.009
|
[15] |
Huan C, Zhang J, Jia Y, et al. Effect of 1-methylcyclopropene treatment on quality, volatile production and ethanol metabolism in kiwifruit during storage at room temperature[J]. Scientia Horticulturae,2020,265:1−10.
|
[16] |
Chen Y H, Sun J Z, Lin H T. Paper-based 1-MCP treatment suppresses cell wall metabolism and delays softening of Huanghua pears during storage[J]. Food Agriculture,2017,97:2547−2552. doi: 10.1002/jsfa.8072
|
[17] |
阚娟, 刘涛, 金昌海. 1-甲基环丙烯对硬溶质型桃果实细胞壁多糖降解特性的影响[J]. 食品工业科技,2012,11:354−358.
|
[18] |
张鲁斌, 贾志伟, 谷会. 适宜 1-MCP 处理保持采后菠萝常温贮藏品质[J]. 农业工程学报,2016,32(4):290−295. doi: 10.11975/j.issn.1002-6819.2016.04.041
|
[19] |
Liu H, Chen F S, Lai S J, et al. Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca)[J]. Food Chemistry,2017,225:87−97. doi: 10.1016/j.foodchem.2017.01.008
|
[20] |
王蓉蓉, 李高阳, 单杨, 等. 不同品种枣果中果胶含量、中性单糖组成及分子质量分布[J]. 中国食品学报,2018,18(6):297−306.
|
[21] |
张鹏龙. 涂膜对采后果蔬质地与多糖分子纳米结构影响的研究[D]. 郑州: 河南工业大学, 2011.
|
[22] |
辛颖. 采后果蔬品质与多糖定量演化及涂膜调控的研究[D]. 郑州: 河南工业大学, 2010.
|
[23] |
Zhang L F, Wang P, Chen F S, et al. Effect of calcium and pectin methyl esterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage[J]. Food Chemistry,2019,289:40−48. doi: 10.1016/j.foodchem.2019.03.008
|
[24] |
Sunny G G, Bert E V, Maarten L A T H, et al. A transcriptomics-based kinetic model for enzyme-induced pectin degradation in apple (Malus×domestica) fruit[J]. Postharvest Biology and Technology,2017,130:64−74. doi: 10.1016/j.postharvbio.2017.04.008
|
[25] |
姜航, 张斌斌, 宋志忠, 等. 1-MCP 和低温处理对采后桃endo-PG 家族基因表达的影响[J]. 果树学报,2018,35(5):521−530.
|
[26] |
Candelas P, Sara P, Victor J M, et al. Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy[J]. Annals of Botany,2014,114:1375−1383. doi: 10.1093/aob/mcu149
|
[27] |
齐秀东, 魏建梅, 高海生, 等. 梨果实发育软化与果胶多糖降解特性的关系[J]. 中国农业科学,2015,48(15):3027−3037. doi: 10.3864/j.issn.0578-1752.2015.15.012
|
[28] |
Zhang L F, Chen F S, Yang H H, et al. Changes in firmness, pectin content and nanostructure of two crisp peach cultivars after storage[J]. Food Science and Technology,2010,43(7):26−32.
|