LIU Aiqing, WANG Haiyan, WANG Yingqiang, et al. Radioprotective Effect of Two Kinds of Protein Peptides in Ray-irradiated Mice[J]. Science and Technology of Food Industry, 2022, 43(9): 359−364. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050346.
Citation: LIU Aiqing, WANG Haiyan, WANG Yingqiang, et al. Radioprotective Effect of Two Kinds of Protein Peptides in Ray-irradiated Mice[J]. Science and Technology of Food Industry, 2022, 43(9): 359−364. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050346.

Radioprotective Effect of Two Kinds of Protein Peptides in Ray-irradiated Mice

More Information
  • Received Date: May 27, 2020
  • Accepted Date: February 21, 2022
  • Available Online: February 27, 2022
  • Objective: To investigate the radioprotective effect of jackfruit protein peptide and collagen peptide with pleasant mouthfeel in many bioactive peptides in 60Co γ ray-irradiated mice. Methods: Two hundred and eighty eight specific pathogen free (SPF) female BALB/c mice were randomly divided into 4 batches with 6 groups and 12 rats in each group. Each batch divided into blank control group, model control group, 2 jackfruit protein peptide intervention groups (0.20, 0.80 g/kg BW) and 2 collagen peptide intervention groups (0.53, 1.6 g/kg BW). After the 26 days of the intragastric administration, the mice except the blank control group received 60Co γ-ray whole body irradiation, and intragastric intervention continued after irradiation. The number of peripheral blood white blood cells (radiation dose 3.5 Gy, 3 and 14 days after irradiation), bone marrow DNA content and the content of 8-OhdG in serum (radiation dose 3.5 Gy, 3 days after radiation), serum hemolysin (radiation dose 1 Gy, 7 days after radiation) and superoxide dismutase (SOD) activity in blood (radiation dose 7 Gy, 7 days after radiation) were measured, respectively. Results: Compared with the model control group, the number of peripheral blood white blood cells in high dose of jackfruit peptide, and low and high dose of collagen peptide were significantly increased on 3rd day after radiation (P<0.05). The number of peripheral blood white blood cells in high dose of jackfruit peptide, and high dose of collagen peptide were significantly increased on 14th day after radiation (P<0.05). Bone marrow DNA content in high dose of jackfruit peptide were significantly increased on 3rd day after radiation (P<0.05). The high-dose group of jackapple peptide and the high-dose group of collagen peptide could significantly reduce the 8-hydroxydeoxyguanosine content in mouse serum after irradiation (P<0.01). Serum hemolysin were significantly increased on 7th day after radiation (P<0.05). Conclusion: Jackfruit peptide had protective effects against ionizing radiation exposure. Collagen peptides improved the number of peripheral blood white blood cells damaged by ionizing radiation and reduce the content of 8-hydroxydeoxyguanosine in mouse serum after radiation.
  • [1]
    吴苏南. 单宁酸对血小板生成的影响及抗辐射作用研究[D]. 重庆: 第三军医大学, 2015.

    WU Sunan. The influence of tannic acid on thrombopoiesis and its anti-radiation effect[D]. Chongqing: The Third Military Medical University, 2015.
    [2]
    李鹏飞. 曲酸的比格犬辐射防护效应及抗辐射分子机制探讨[D]. 合肥: 安徽医科大学, 2015.

    LI Pengfei. Protective effects of kojic acid on radiation damage in beagle dogs and molecular mechanisms of its anti-radiation[D]. Hefei: Anhui Medical University, 2015.
    [3]
    洪倩. 阿魏酸抗辐射活性及其作用机制研究[D]. 北京: 中国人民解放军军事医学科学院, 2012.

    HONG Qian. The anti-radiation effect and mechanism of ferulic acid[D]. Beijing: Academy of Military Medical Sciences, 2012.
    [4]
    KREUZER M, AUVINEN A, CARDIS E, et al. Multidisciplinary European low dose initiative (MELODI): Strategic research agenda for low dose radiation risk research[J]. Radiation and Environmental Biophysics,2018,57(1):1−11. doi: 10.1007/s00411-017-0727-0
    [5]
    SINGH V K, HAUERJENSEN M. γ-Tocotrienol as a promising countermeasure for acute radiation syndrome: Currentstatus[J]. International Journal of Molecular Sciences,2016,17(5):663. doi: 10.3390/ijms17050663
    [6]
    赵海田, 王振宇, 姚磊, 等. 天然产物对电离辐射防护与修复作用的研究进展[J]. 东北农业大学学报,2012,43(9):139−144. [ZHAO Haitian, WANG Zhenyu, YAO Lei, et al. Advance on ionizing radiation protection and repair research of natural products[J]. Journal of Northeast Agricultural University,2012,43(9):139−144.
    [7]
    珠娜, 李勇. 生物活性肽的辐射防护作用的研究进展[J]. 中国食物与营养,2020,26(2):62−65. [ZHU Na, LI Yong. Research progress of radio protective effect of bioactive peptiedes[J]. Food and Nutrition in China,2020,26(2):62−65. doi: 10.3969/j.issn.1006-9577.2020.02.013
    [8]
    ANNE P R. PhaseⅡ trial of subcutaneous amifostine in patitents undergoing radiation therapy for head and neek cancer[J]. Sem in Onco,2002,29:80−83. doi: 10.1053/sonc.2002.37350b
    [9]
    SRINIVASAN M, SUDHEER A R, RAJASEKARAN KN, et al. Effect of curcumin analog ongamma-radiation-induced cellular changes in primary culture of isolated rat hepatocytes in vitro[J]. Chem Biol Interact,2008,176(1):1−8. doi: 10.1016/j.cbi.2008.03.006
    [10]
    BENKOVI V, KNEZEVI A H, DIKI D, etal. Radioprotective effects of quercetin and athanolic extract of propolis in gamma-irradiated mice[J]. Archives of Industrial Hygiene and Toxicology,2009,60(2):129−138. doi: 10.2478/10004-1254-60-2009-1908
    [11]
    伍明江, 沈艳, 吴晓黎, 等. 刺薏复方抗辐射辅助保护功效研究[J]. 中国科技信息,2008,18:226−227. [WU Mingjiang, SHEN Yan, WU Xiaoli, et al. Study on anti-radiation auxiliary protective effect of Ciyi compound[J]. China Science and Technology Information,2008,18:226−227. doi: 10.3969/j.issn.1001-8972.2008.01.145
    [12]
    罗琦, 梁庆模. 天然药物抗辐射损伤作用机制的研究现状与进展[J]. 辽宁中医药大学学报,2011,13(3):209−211. [LUO Qi, LIANG Qingmo. Research status on mechanism of action of natural medicine on anti-radiation damage[J]. Journal of Liaoning University of Traditional Chinese Medicine,2011,13(3):209−211.
    [13]
    珠娜, 张亭, 刘睿, 等. 核桃低聚肽辐射防护作用[J]. 中国公共卫生,2019,35(12):1648−1651. [ZHU Na, ZHANG Ting, LIU Rui, et al. Radioprotective effect of walnut oligopeptides in mice[J]. Chin J Public Health,2019,35(12):1648−1651. doi: 10.11847/zgggws1119349
    [14]
    刘雨萱, 陈媛, 李美良, 等. 罗非鱼鱼鳞胶原蛋白的研究进展[J]. 食品工业科技,2019,40(6):355−360. [LIU Yuxuan, CHEN Yuan, LI Meiliang, et al. Research progress of tilapia fish scale collagen[J]. Science and Technology of Food Industry,2019,40(6):355−360.
    [15]
    刘磊, 孙卫东, 张业辉, 等. 罗非鱼鳞胶原蛋白复合凝胶的防辐射作用及理化性质研究[J]. 现代食品科技,2019,35(8):91−97. [LIU Lei, SUN Weidong, ZHANG Yehui, et al. Anti-radiation effect and physicochemical properties of tilapia scale collagen composite gel[J]. Modern Food Science and Technology,2019,35(8):91−97.
    [16]
    盛周煌, 贾盟盟, 朱良. 罗非鱼皮胶原蛋白多肽的体外抗氧化活性[J]. 食品科技,2018,43(11):274−278. [SHENG Zhouhuang, JIA Mengmeng, ZHU Liang. In vitro antioxidant activity of collagen peptides from tilapia skin[J]. Food Science and Technology,2018,43(11):274−278.
    [17]
    周先艳, 樊建, 唐远龙, 等. 罗非鱼皮胶原蛋白水解产物的体外抗氧化活性和体内抗衰老作用[J]. 食品科学,2016,37(15):221−226. [ZHOU Xianyan, Fan Jian, TANG Yuanlong, et al. In vitro antioxidant activity and in vivo anti-aging effect of tilapia skin gelatin hydrolysates[J]. Food Science,2016,37(15):221−226. doi: 10.7506/spkx1002-6630-201615037
    [18]
    SWAMI S B, THAKOR N J, HALDANKAR P M, et al. Jackfruit and its many functional components as related to human health: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2012,11(6):565−576. doi: 10.1111/j.1541-4337.2012.00210.x
    [19]
    HETTIARATCHI U P, EKANAYAKE S, WELIHINDA J. Nutritional assessment of a jackfruit (Artocarpus heterophyllus) meal[J]. Ceylon Medical Journal,2011,56(2):54−58. doi: 10.4038/cmj.v56i2.3109
    [20]
    BALIGA M S, SHIVASHANKARA A R, HANIADKAR, et al. Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam. (jackfruit): A review[J]. Food Research International,2011,44(7):1800−1811. doi: 10.1016/j.foodres.2011.02.035
    [21]
    吴刚, 陈海平, 桑利伟, 等. 中国菠萝蜜产业发展现状及对策[J]. 热带农业科学,2013,33(2):91−97. [WU Gang, CHEN Haiping, SANG Liwei, et al. Status of jackfruit industry in China and development countermeasures[J]. Chinese Journal of Tropical Agriculture,2013,33(2):91−97. doi: 10.3969/j.issn.1009-2196.2013.02.020
    [22]
    郝云涛, 珠娜, 刘欣然, 等. 菠萝蜜低聚肽的免疫调节作用研究[J]. 食品工业科技,2020,41(7):284−288,294. [HAO Yuntao, ZHU Na, LIU Xinran, et al. Study on the immunoregulatory function of jackfruit oligopeptides[J]. Science and Technology of Food Industry,2020,41(7):284−288,294.
    [23]
    郝云涛, 刘睿, 珠娜. 等. 菠萝蜜低聚肽对γ射线辐照小鼠氧化损伤的保护作用[J]. 中国食品卫生杂志,2019,31(4):325−329. [HAO Yuntao, LIU Rui, ZHU Na, et al. Protective effect of jackfruit oligopeptides on oxidative damage in γ-ray irradiated mice[J]. Food and Nutrition in China,2019,31(4):325−329.
    [24]
    李解. 雅安藏茶及其茶褐素、茶多糖提取物对60Co γ辐射损伤小鼠防护作用的研究[D]. 雅安: 四川农业大学, 2017.

    LI Jie. Protective effect of extracted theabrownines and tea polysaccharide from Ya’an tibetan tea on radiation damage in mice caused by 60Co γ-ray[D]. Ya’an: Sichuan Agricultural University, 2017.
    [25]
    刘雅萍. 雪莲培养物的抗辐射抗疲劳抗氧化功能评价[D]. 大连: 大连理工大学, 2012.

    LIU Yaping. Evaluation on Sanussurea involucrate cell cultures for anti-oxidation & radioresistance and anti-fatigue[D]. Dalian: Dalian University of Technology, 2012.
    [26]
    王毅虎, 张兵, 王富荣, 等. 胶原蛋白增强免疫力功能研究[J]. 明胶科学与技术,2015,35(3):137−143. [WANG Yihu, ZHANG Bing, WANG Furong, et al. The Research of bone collagen peptide on enhancing function[J]. The Science and Technology of Gelatin,2015,35(3):137−143. doi: 10.3969/j.issn.1004-9657.2015.03.006
    [27]
    朱科学, 张彦军, 谭乐和, 等. 菠萝蜜多糖提取工艺优化及初步鉴定[J]. 热带作物学报,2016,37(2):404−410. [ZHU Kexue, ZHANG Yanjun, TAN Lehe, et al. Optimized extraction and identification of polysaccharides isolated from jackfruit (Artocarpus heterophyllus Lam.) pulp[J]. Chinese Journal of Tropical Crops,2016,37(2):404−410. doi: 10.3969/j.issn.1000-2561.2016.02.030
    [28]
    朱科学, 王颖倩, 张彦军, 等. 菠萝蜜多糖对脾淋巴细胞抗氧化作用及免疫功能的影响[J]. 食品科学,2017,38(23):207−212. [ZHU Kexue, WANG Yingqian, ZHANG Yanjun, et al. Antioxidant activity and immune regulation of polysaccharide from Artocarpus hetreophyllus Lam. on spleen lymphocyte[J]. Food Science,2017,38(23):207−212. doi: 10.7506/spkx1002-6630-201723033
    [29]
    ZHU K X, YAO S W, ZHANG Y J, et al. Effects of in vitro saliva, gastric and intestinal digestion on the chemical properties, antioxidant activity of polysaccharide from Artocarpus heterophyllus Lam. (jackfruit) pulp[J]. Food Hydrocolloids,2019,87:952−959. doi: 10.1016/j.foodhyd.2018.09.014
    [30]
    FANG S C, HSU C L, YEN G C. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterohyllus[J]. Journal of Agricultural and Food Chemistry,2008,56(12):4453−4468.
    [31]
    YAO X, WU D, DONG N N, et al. Mocin C, a phenolic compound isolated from Artocarpus heterophylus, suppresses lipopolysaccharide-activated inflammatory responses in murine raw 264.7 macrophages[J]. International Journal of Molecular Sciences,2016,17(8):1199−1213. doi: 10.3390/ijms17081199
    [32]
    STAHL W, SIES H. Bioactivity and protective effects of natural carotenoids[J]. Biochimica ET Biophysica Acta,2005,1740:101−107. doi: 10.1016/j.bbadis.2004.12.006
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (175) PDF downloads (14) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return