Citation: | WAN Feng, WU Yajing. Research Progress on Detection of Foodborne Pathogens in Food Using Biosensors[J]. Science and Technology of Food Industry, 2021, 42(8): 346−353. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050290. |
[1] |
Reta N, Saint C P, Michelmore A, et al. Nanostructured electrochemical biosensors for label-free detection of water- and food-borne pathogens[J]. ACS Applied Materials & Interfaces,2018,10(7):6605−6072.
|
[2] |
李萌, 王静雪, 林洪. 噬菌体检测食源性致病菌的研究进展[J]. 食品科学,2010,31(23):439−446.
|
[3] |
封莉, 黄继超, 刘欣, 等. 食源性致病菌快速检测技术研究进展[J]. 食品科学,2012,33(21):332−339.
|
[4] |
关桦楠, 宋岩, 龚德状, 等. 基于电化学生物传感器检测食源性致病菌及其毒素的研究进展[J]. 食品研究与开发,2019,40(8):206−211. doi: 10.3969/j.issn.1005-6521.2019.08.036
|
[5] |
Wu Q Y, Zhang Y Z, Yang Q, et al. Review of electrochemical DNA biosensors for detecting food borne pathogens[J]. Sensors,2019,19(22):4916−4948. doi: 10.3390/s19224916
|
[6] |
Ali A A, Altemimi A B, Alhelfi N, et al. Application of biosensors for detection of pathogenic food bacteria: A Review[J]. Biosensors,2020,10(6):58−70. doi: 10.3390/bios10060058
|
[7] |
Zhang R, Belwal T, Li L, et al. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades[J]. Comprehensive Reviews in Food Science and Food Safety,2020,3:1−23.
|
[8] |
Cesewski E, Johnson B N. Electrochemical biosensors for pathogen detection[J]. Biosensors & Bioelectronics,2020,159(11):2214−2241.
|
[9] |
Wang S J, Sun C Y, Hu Q S, et al. A homogeneous magnetic bead-based impedance immunosensor for highlysensitive detection of Escherichia coli O157: H7[J]. Biochemical Engineering Journal,2020,156(10):7513−7519.
|
[10] |
Farooq U, Yang Q, Ullah M W, et al. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors[J]. Biosensors & Bioelectronics,2018,118:204−216. doi: 10.1016/j.bios.2018.07.058
|
[11] |
Wang L, Huo X T, Qi W Z, et al. Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification[J]. Talanta,2020,211:120715−120725. doi: 10.1016/j.talanta.2020.120715
|
[12] |
Kashish, Soni D K, Mishra S K, et al. Label-free impedimetric detection of Listeria monocytogenes based on poly-5-carboxy indole modified ssDNA probe[J]. Journal of Biotechnology,2015,200:70−76. doi: 10.1016/j.jbiotec.2015.02.025
|
[13] |
Ward A C, Hannah A J, Kendrick S L, et al. Identification and characterisation of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy[J]. Biosensors & Bioelectronics,2018,110:65−70.
|
[14] |
Izadi Z, Sheikh-zeinoddin M, Ensafi A A, et al. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula[J]. Biosensors & Bioelectronics,2016,80:582−589.
|
[15] |
Zarei S S, Soleimanian-zad S, Ensafi A A. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode[J]. Microchimica Acta,2018,185(12):1−9.
|
[16] |
Tam P D, Thang C X. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection[J]. Materials ence & engineering,2016,58(Jan.):953−959.
|
[17] |
Qian X C, Qu Q, Li L, et al. Ultrasensitive electrochemical detection of Clostridium perfringens DNA based morphology-dependent DNA adsorption properties of CeO2 nanorods in dairy products[J]. Sensors,2018,18(6):1878−1894. doi: 10.3390/s18061878
|
[18] |
Xu D, Jiang L, Singh A, et al. Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity[J]. Chemical Communications,2015,51(7):1289−1292. doi: 10.1039/C4CC08808E
|
[19] |
Yuan F, Leng B Y, Wang B S. Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt?[J]. Frontiers in Plant Science,2016,7:977−989.
|
[20] |
De Miranda J L, Oliveira M D L, Oliveira I S, et al. A Simple nanostructured biosensor based on Clavanin A antimicrobial peptide for gram-negative bacteria detection[J]. Biochemical Engineering Journal,2017,124:108−114. doi: 10.1016/j.bej.2017.04.013
|
[21] |
Zhong M, Yang L, Yang H, et al. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157: H7 using CdS quantum dots-encapsulated metal-organic frameworks assignal-amplifying tags[J]. Biosens & Bioelectron,2019,126:493−500. doi: 10.1016/j.bios.2018.11.001
|
[22] |
Ye Y, Yan W, Liu Y, et al. Electrochemical detection of Salmonella using an invA genosensor on polypyrrole-reduced graphene oxide modified glassy carbon electrode and AuNPs-horseradish peroxidase-streptavidin as nanotag[J]. Analytica Chimica Acta,2019,1074:80−88. doi: 10.1016/j.aca.2019.05.012
|
[23] |
Zhu Y Y, Xing W X, Shan S J, et al. Characterization and immune response expression of the Rig-I-like receptor mda5 in common carp Cyprinus carpio[J]. Journal of Fish Biology,2016,88:2188−2202. doi: 10.1111/jfb.12981
|
[24] |
Elizalde J, Morant-Miana M, Ainara Rodríguez. Microscale electrodes integrated on non-conventional substrates for real sample[C]. Biosens. Bioelectron, 2015, 70: 491-497.
|
[25] |
Liébana S, BrandãoD, Cortés P, et al. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli onsilica magnetic particles[J]. Analytica Chimica Acta,2016,904:1−9. doi: 10.1016/j.aca.2015.09.044
|
[26] |
Silva N F D, Magalhaes J M C S, Oliva-Teles M T, et al. A potentiometric magnetic immunoassay for rapid detection of Salmonella typhimurium[J]. Anal. Methods,2015,7(9):4008−4011. doi: 10.1039/C5AY00053J
|
[27] |
Lv E, Ding J, Qin W. Potentiometric detection of Listeria monocytogenes via a short 750 antimicrobial peptide pair-based sandwich assay[J]. Analytical Chemistry,2018,90(22):13600−13606. doi: 10.1021/acs.analchem.8b03809
|
[28] |
Lahcen A A, Arduini F, Lista F, et al. Label-free electrochemical sensor based on spore-imprinted polymer for Bacillus cereus spore detection[J]. Sensors & Actuators,2018,B276(DEC.):114−120.
|
[29] |
Zhang J L, Wang J J, Zhang X Q, etal. Rapid detection of Escherichia coli based on 16S rDNA nanogap network electrochemical biosensor[J]. Biosensors & Bioelectronics,2018,118:9−15.
|
[30] |
Airis Maria Araújo Melo, Alexandre D L, Furtado R F, et al. Electrochemical immunosensors for Salmonella detection in food[J]. Applied Microbiology and Biotechnology,2016,100(12):5301−5312. doi: 10.1007/s00253-016-7548-y
|
[31] |
许思齐, 金敏. 光学生物传感器在致病菌检测中的研究进展[J]. 食品研究与开发,2019,40(13):192−199.
|
[32] |
Park B H, Oh S J, Jung J H, et al. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics[J]. Biosensors & Bioelectronics,2017,91:334−340.
|
[33] |
Wang X L, Huang Y K, Wu S J, et al. Simultaneousdetection of Staphylococcus aureus and Salmonellatyphimurium using multicolor time-resolved fluorescence nanoparticles as labels[J]. Int J Food Microbiol,2016,237:172−179.
|
[34] |
Kim S U, Jo E J, Noh Y, et al. Adenosine triphosphate bioluminescence-based bacteria detection using targeted photothermal lysis by gold nanorods[J]. Analytical Chemistry,2018,90(17):10171−10178. doi: 10.1021/acs.analchem.8b00254
|
[35] |
Yoo S M, Lee S Y. Optical biosensors for the detection of pathogenic microorganisms[J]. Trends in Biotechnology,2015,34(1):7−25.
|
[36] |
Zhou C, Zou H M, Li M, et al. Fiber optic surface plasmon resonance sensor for detection ofE. coliO157: H7 based on antimicrobial peptides and AgNPs-rGO[J]. Biosensors & Bioelectronics,2018(117):347−353.
|
[37] |
Masdor N, Altintas Z, Tothill I. Surface plasmon resonance immunosensor for the detection of Campylobacter jejuni[J]. Chemosensors,2017,5(2):1−16.
|
[38] |
Tokel O, Yildiz U H, Inci F, et al. Portable microfluidic integrated plasmonic platform for pathogen detection[J]. Scientific Reports,2015,5(1):9152−9161. doi: 10.1038/srep09152
|
[39] |
Aura A M, D'agata R, Spoto G, et al. Ultrasensitive detection of staphylococcus aureus and listeria monocytogenes genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging[J]. Chemistry Select,2017,2(24):7024−7030.
|
[40] |
Morlay A, Duquenoy A, Piat F, et al. Label-free immuno-sensors for the fast detection of Listeria in food[J]. Measurement,2017,49(98):305−310.
|
[41] |
Duan N, Shen M, Qi S, et al. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,230:118103. doi: 10.1016/j.saa.2020.118103
|
[42] |
Law JW-F, Mutalib A N-S, ChanK-G, et al. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations[J]. Frontiers in Microbiology,2015,5:770−790.
|
[43] |
Shen Z Q, Wang J F, Qiu Z G, et al. QCM immunosensor detection of Escherichia coli O157: H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold[J]. Biosensors & Bioelectronics,2011,26(7):3376−3381. doi: 10.1016/j.bios.2010.12.035
|
[44] |
Masdor N, Altintas Z, Tothill I. Sensitivedetection of Campylobacter jejuni using nanoparticles enhanced QCM sensor[J]. Biosens & Bioelectron,2016,78:328−336. doi: 10.1016/j.bios.2015.11.033
|
[45] |
Dong Z M, Zhao G C. Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides[J]. Talanta,2015,137:55−61. doi: 10.1016/j.talanta.2015.01.015
|
[46] |
Yu X F, Chen F, Wang R H, et al. Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 usingQCM sensor[J]. Biotechnol,2018,266:39−49.
|
[47] |
Xu Z, Yuan Y J. Quantification of Staphylococcus aureus using surface acoustic wave sensors[J]. RSC Advances,2019,9(15):8411−8414. doi: 10.1039/C8RA09790A
|
[48] |
齐晓琳, 刘建生, 何世堂, 等. 基于新型声表面波单端对谐振器的生物传感器[J]. 压电与声光,2020,42(2):159−162. doi: 10.11977/j.issn.1004-2474.2020.02.003
|
[49] |
Zhang Z G, Zhou J, Du X. Electrochemical biosensors for detection of foodborne pathogens[J]. Micromachines,2019,10(4):222−238. doi: 10.3390/mi10040222
|
[50] |
Bahadır E B, Sezgintürk M K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses[J]. Analytical Biochemistry,2015,478:107−120. doi: 10.1016/j.ab.2015.03.011
|
[51] |
Puiu M, Bala C. Microfluidics-integrated biosensing platforms as emergency tools for on-site field detection of foodborne pathogens[J]. Trends in Analytical Chemistry,2020:125.
|
[52] |
Luo K, Kim H Y, Oh M H, et al. Paper-based lateral flow strip assay for the detection of foodborne pathogens: Principles, applications, technological challenges and opportunities[J]. Critical Reviews in Food Science and Nutrition,2018,60(1):157−170. doi: 10.1080/10408398.2018.1516623
|
[53] |
Riu J, Giussani B. Electrochemical biosensors for the detection of pathogenic bacteria in food[J]. Trends in Analytical Chemistry,2020:115863.
|
1. |
赵志程,赵巍,张爱霞,刘敬科,生庆海,李朋亮. 脂质热解形成的挥发性成分及途径研究进展. 粮食与油脂. 2024(08): 12-18 .
![]() | |
2. |
刘颖,黄小波. 食品中活泼羰基化合物研究进展. 中外食品工业. 2024(11): 43-45 .
![]() |