WAN Feng, WU Yajing. Research Progress on Detection of Foodborne Pathogens in Food Using Biosensors[J]. Science and Technology of Food Industry, 2021, 42(8): 346−353. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050290.
Citation: WAN Feng, WU Yajing. Research Progress on Detection of Foodborne Pathogens in Food Using Biosensors[J]. Science and Technology of Food Industry, 2021, 42(8): 346−353. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050290.

Research Progress on Detection of Foodborne Pathogens in Food Using Biosensors

More Information
  • Received Date: May 24, 2020
  • Available Online: January 27, 2021
  • Foodborne pathogens are one of the most main factors causing food safety problems. Traditional methods for detecting foodborne pathogens have drawbacks which have not only long detection time but also have poor specificity and sensitivity. Nowadays, with the progress and development of biological and electronic technology, many new detection methods have emerged. Biosensor is one of the technologies with broad application and market prospects. Using biosensor technology can achieve efficient, rapid and real-time detection and monitor of microorganisms in food, thereby it pioneers a new developing direction for the establishment of system to detect foodborne pathogens rapidly. This paper introduces the basic principles and classifications of biosensors, reviews the application and development of common and different biosensors in the detection of foodborne pathogens in food, compares their advantages and disadvantages, and summarizes existing development bottlenecks of commercialization and prospects for further trends.
  • [1]
    Reta N, Saint C P, Michelmore A, et al. Nanostructured electrochemical biosensors for label-free detection of water- and food-borne pathogens[J]. ACS Applied Materials & Interfaces,2018,10(7):6605−6072.
    [2]
    李萌, 王静雪, 林洪. 噬菌体检测食源性致病菌的研究进展[J]. 食品科学,2010,31(23):439−446.
    [3]
    封莉, 黄继超, 刘欣, 等. 食源性致病菌快速检测技术研究进展[J]. 食品科学,2012,33(21):332−339.
    [4]
    关桦楠, 宋岩, 龚德状, 等. 基于电化学生物传感器检测食源性致病菌及其毒素的研究进展[J]. 食品研究与开发,2019,40(8):206−211. doi: 10.3969/j.issn.1005-6521.2019.08.036
    [5]
    Wu Q Y, Zhang Y Z, Yang Q, et al. Review of electrochemical DNA biosensors for detecting food borne pathogens[J]. Sensors,2019,19(22):4916−4948. doi: 10.3390/s19224916
    [6]
    Ali A A, Altemimi A B, Alhelfi N, et al. Application of biosensors for detection of pathogenic food bacteria: A Review[J]. Biosensors,2020,10(6):58−70. doi: 10.3390/bios10060058
    [7]
    Zhang R, Belwal T, Li L, et al. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades[J]. Comprehensive Reviews in Food Science and Food Safety,2020,3:1−23.
    [8]
    Cesewski E, Johnson B N. Electrochemical biosensors for pathogen detection[J]. Biosensors & Bioelectronics,2020,159(11):2214−2241.
    [9]
    Wang S J, Sun C Y, Hu Q S, et al. A homogeneous magnetic bead-based impedance immunosensor for highlysensitive detection of Escherichia coli O157: H7[J]. Biochemical Engineering Journal,2020,156(10):7513−7519.
    [10]
    Farooq U, Yang Q, Ullah M W, et al. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors[J]. Biosensors & Bioelectronics,2018,118:204−216. doi: 10.1016/j.bios.2018.07.058
    [11]
    Wang L, Huo X T, Qi W Z, et al. Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification[J]. Talanta,2020,211:120715−120725. doi: 10.1016/j.talanta.2020.120715
    [12]
    Kashish, Soni D K, Mishra S K, et al. Label-free impedimetric detection of Listeria monocytogenes based on poly-5-carboxy indole modified ssDNA probe[J]. Journal of Biotechnology,2015,200:70−76. doi: 10.1016/j.jbiotec.2015.02.025
    [13]
    Ward A C, Hannah A J, Kendrick S L, et al. Identification and characterisation of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy[J]. Biosensors & Bioelectronics,2018,110:65−70.
    [14]
    Izadi Z, Sheikh-zeinoddin M, Ensafi A A, et al. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula[J]. Biosensors & Bioelectronics,2016,80:582−589.
    [15]
    Zarei S S, Soleimanian-zad S, Ensafi A A. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode[J]. Microchimica Acta,2018,185(12):1−9.
    [16]
    Tam P D, Thang C X. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection[J]. Materials ence & engineering,2016,58(Jan.):953−959.
    [17]
    Qian X C, Qu Q, Li L, et al. Ultrasensitive electrochemical detection of Clostridium perfringens DNA based morphology-dependent DNA adsorption properties of CeO2 nanorods in dairy products[J]. Sensors,2018,18(6):1878−1894. doi: 10.3390/s18061878
    [18]
    Xu D, Jiang L, Singh A, et al. Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity[J]. Chemical Communications,2015,51(7):1289−1292. doi: 10.1039/C4CC08808E
    [19]
    Yuan F, Leng B Y, Wang B S. Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt?[J]. Frontiers in Plant Science,2016,7:977−989.
    [20]
    De Miranda J L, Oliveira M D L, Oliveira I S, et al. A Simple nanostructured biosensor based on Clavanin A antimicrobial peptide for gram-negative bacteria detection[J]. Biochemical Engineering Journal,2017,124:108−114. doi: 10.1016/j.bej.2017.04.013
    [21]
    Zhong M, Yang L, Yang H, et al. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157: H7 using CdS quantum dots-encapsulated metal-organic frameworks assignal-amplifying tags[J]. Biosens & Bioelectron,2019,126:493−500. doi: 10.1016/j.bios.2018.11.001
    [22]
    Ye Y, Yan W, Liu Y, et al. Electrochemical detection of Salmonella using an invA genosensor on polypyrrole-reduced graphene oxide modified glassy carbon electrode and AuNPs-horseradish peroxidase-streptavidin as nanotag[J]. Analytica Chimica Acta,2019,1074:80−88. doi: 10.1016/j.aca.2019.05.012
    [23]
    Zhu Y Y, Xing W X, Shan S J, et al. Characterization and immune response expression of the Rig-I-like receptor mda5 in common carp Cyprinus carpio[J]. Journal of Fish Biology,2016,88:2188−2202. doi: 10.1111/jfb.12981
    [24]
    Elizalde J, Morant-Miana M, Ainara Rodríguez. Microscale electrodes integrated on non-conventional substrates for real sample[C]. Biosens. Bioelectron, 2015, 70: 491-497.
    [25]
    Liébana S, BrandãoD, Cortés P, et al. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli onsilica magnetic particles[J]. Analytica Chimica Acta,2016,904:1−9. doi: 10.1016/j.aca.2015.09.044
    [26]
    Silva N F D, Magalhaes J M C S, Oliva-Teles M T, et al. A potentiometric magnetic immunoassay for rapid detection of Salmonella typhimurium[J]. Anal. Methods,2015,7(9):4008−4011. doi: 10.1039/C5AY00053J
    [27]
    Lv E, Ding J, Qin W. Potentiometric detection of Listeria monocytogenes via a short 750 antimicrobial peptide pair-based sandwich assay[J]. Analytical Chemistry,2018,90(22):13600−13606. doi: 10.1021/acs.analchem.8b03809
    [28]
    Lahcen A A, Arduini F, Lista F, et al. Label-free electrochemical sensor based on spore-imprinted polymer for Bacillus cereus spore detection[J]. Sensors & Actuators,2018,B276(DEC.):114−120.
    [29]
    Zhang J L, Wang J J, Zhang X Q, etal. Rapid detection of Escherichia coli based on 16S rDNA nanogap network electrochemical biosensor[J]. Biosensors & Bioelectronics,2018,118:9−15.
    [30]
    Airis Maria Araújo Melo, Alexandre D L, Furtado R F, et al. Electrochemical immunosensors for Salmonella detection in food[J]. Applied Microbiology and Biotechnology,2016,100(12):5301−5312. doi: 10.1007/s00253-016-7548-y
    [31]
    许思齐, 金敏. 光学生物传感器在致病菌检测中的研究进展[J]. 食品研究与开发,2019,40(13):192−199.
    [32]
    Park B H, Oh S J, Jung J H, et al. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics[J]. Biosensors & Bioelectronics,2017,91:334−340.
    [33]
    Wang X L, Huang Y K, Wu S J, et al. Simultaneousdetection of Staphylococcus aureus and Salmonellatyphimurium using multicolor time-resolved fluorescence nanoparticles as labels[J]. Int J Food Microbiol,2016,237:172−179.
    [34]
    Kim S U, Jo E J, Noh Y, et al. Adenosine triphosphate bioluminescence-based bacteria detection using targeted photothermal lysis by gold nanorods[J]. Analytical Chemistry,2018,90(17):10171−10178. doi: 10.1021/acs.analchem.8b00254
    [35]
    Yoo S M, Lee S Y. Optical biosensors for the detection of pathogenic microorganisms[J]. Trends in Biotechnology,2015,34(1):7−25.
    [36]
    Zhou C, Zou H M, Li M, et al. Fiber optic surface plasmon resonance sensor for detection ofE. coliO157: H7 based on antimicrobial peptides and AgNPs-rGO[J]. Biosensors & Bioelectronics,2018(117):347−353.
    [37]
    Masdor N, Altintas Z, Tothill I. Surface plasmon resonance immunosensor for the detection of Campylobacter jejuni[J]. Chemosensors,2017,5(2):1−16.
    [38]
    Tokel O, Yildiz U H, Inci F, et al. Portable microfluidic integrated plasmonic platform for pathogen detection[J]. Scientific Reports,2015,5(1):9152−9161. doi: 10.1038/srep09152
    [39]
    Aura A M, D'agata R, Spoto G, et al. Ultrasensitive detection of staphylococcus aureus and listeria monocytogenes genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging[J]. Chemistry Select,2017,2(24):7024−7030.
    [40]
    Morlay A, Duquenoy A, Piat F, et al. Label-free immuno-sensors for the fast detection of Listeria in food[J]. Measurement,2017,49(98):305−310.
    [41]
    Duan N, Shen M, Qi S, et al. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,230:118103. doi: 10.1016/j.saa.2020.118103
    [42]
    Law JW-F, Mutalib A N-S, ChanK-G, et al. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations[J]. Frontiers in Microbiology,2015,5:770−790.
    [43]
    Shen Z Q, Wang J F, Qiu Z G, et al. QCM immunosensor detection of Escherichia coli O157: H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold[J]. Biosensors & Bioelectronics,2011,26(7):3376−3381. doi: 10.1016/j.bios.2010.12.035
    [44]
    Masdor N, Altintas Z, Tothill I. Sensitivedetection of Campylobacter jejuni using nanoparticles enhanced QCM sensor[J]. Biosens & Bioelectron,2016,78:328−336. doi: 10.1016/j.bios.2015.11.033
    [45]
    Dong Z M, Zhao G C. Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides[J]. Talanta,2015,137:55−61. doi: 10.1016/j.talanta.2015.01.015
    [46]
    Yu X F, Chen F, Wang R H, et al. Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 usingQCM sensor[J]. Biotechnol,2018,266:39−49.
    [47]
    Xu Z, Yuan Y J. Quantification of Staphylococcus aureus using surface acoustic wave sensors[J]. RSC Advances,2019,9(15):8411−8414. doi: 10.1039/C8RA09790A
    [48]
    齐晓琳, 刘建生, 何世堂, 等. 基于新型声表面波单端对谐振器的生物传感器[J]. 压电与声光,2020,42(2):159−162. doi: 10.11977/j.issn.1004-2474.2020.02.003
    [49]
    Zhang Z G, Zhou J, Du X. Electrochemical biosensors for detection of foodborne pathogens[J]. Micromachines,2019,10(4):222−238. doi: 10.3390/mi10040222
    [50]
    Bahadır E B, Sezgintürk M K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses[J]. Analytical Biochemistry,2015,478:107−120. doi: 10.1016/j.ab.2015.03.011
    [51]
    Puiu M, Bala C. Microfluidics-integrated biosensing platforms as emergency tools for on-site field detection of foodborne pathogens[J]. Trends in Analytical Chemistry,2020:125.
    [52]
    Luo K, Kim H Y, Oh M H, et al. Paper-based lateral flow strip assay for the detection of foodborne pathogens: Principles, applications, technological challenges and opportunities[J]. Critical Reviews in Food Science and Nutrition,2018,60(1):157−170. doi: 10.1080/10408398.2018.1516623
    [53]
    Riu J, Giussani B. Electrochemical biosensors for the detection of pathogenic bacteria in food[J]. Trends in Analytical Chemistry,2020:115863.
  • Cited by

    Periodical cited type(2)

    1. 赵志程,赵巍,张爱霞,刘敬科,生庆海,李朋亮. 脂质热解形成的挥发性成分及途径研究进展. 粮食与油脂. 2024(08): 12-18 .
    2. 刘颖,黄小波. 食品中活泼羰基化合物研究进展. 中外食品工业. 2024(11): 43-45 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (612) PDF downloads (66) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return