SUN Jiangli, LI Rui, ZHU Hongmei. Water Changes of Purple Sweet Potato Slices Using Low-field NMR during Vacuum Freeze Drying[J]. Science and Technology of Food Industry, 2021, 42(7): 9−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020050207.
Citation: SUN Jiangli, LI Rui, ZHU Hongmei. Water Changes of Purple Sweet Potato Slices Using Low-field NMR during Vacuum Freeze Drying[J]. Science and Technology of Food Industry, 2021, 42(7): 9−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020050207.

Water Changes of Purple Sweet Potato Slices Using Low-field NMR during Vacuum Freeze Drying

More Information
  • Received Date: May 17, 2020
  • Available Online: January 26, 2021
  • In order to explore the dynamic law of water and the drying quality of purple sweet potato slices during the vacuum freeze drying, the existential form of internal water and the change of water content in purple sweet potato slices were studied by low-field nuclear magnetic resonance and imaging techniques. Additionally, during the drying, stereoscopic microscope and color difference meter were used to observe the microstructure and the color change of purple sweet potato slices respectively. As a result, purple sweet potato slices removed most of free water and partial bound water and semi-bound water, the volume of semi-bound water tended to increase and then decrease, and the whole of inversion spectrum of transverse relaxation shifted to T22 peak. With the drying process, the water content in purple sweet potato slices continued to decline, and the brightness and the clarity of the pseudo-color images accordingly decreased. In terms of drying effect, the observation of microscopic structure showed that the sublimation of water first diffused to both sides of purple sweet potato slices where the purple sweet potato slices formedloose porous structure after water removed. Prolonging the drying time can improve the brightness of purple sweet potato slices, but had little effect on the color. Hence vacuum freeze drying can be used to develop purple sweet potato slices as leisure food.
  • [1]
    田潇瑜, 黄星奕, 白竣文, 等. 基于近红外光谱技术的紫薯贮藏期间花青素含量检测[J]. 农业机械学报,2019,50(2):350−355. doi: 10.6041/j.issn.1000-1298.2019.02.040
    [2]
    陈梅香, 魏俊杰, 贾春凤. 紫薯的营养保健功能及发展趋势[J]. 食品研究与开发,2012,33(8):199−201. doi: 10.3969/j.issn.1005-6521.2012.08.058
    [3]
    程琤, 刘超, 贺炜, 等. 紫甘薯花青素的稳定性及抗氧化性研究[J]. 营养学报,2011,33(3):291−296.
    [4]
    吕昱, 严敏. 紫薯花色苷的生理功能及分离纯化研究进展[J]. 食品与机械,2013,29(4):250−253, 257. doi: 10.3969/j.issn.1003-5788.2013.04.061
    [5]
    杨旸. 紫薯花青素的提纯及其对脂类代谢和抗氧化性影响的研究[D]. 湖南: 湖南农业大学, 2012.
    [6]
    任彦莲, 陈芦根. 紫薯深加工产品开发研究进展[J]. 农业科技通讯,2019(12):9−11.
    [7]
    单珊, 周惠明, 朱科学. 紫薯的加工与利用研究进展[C]. 中国粮油学会第六届学术年会论文集. 北京, 2010: 95-98.
    [8]
    Granda C, Moreirarg, Tichy S E. Reduction of acrylamide formation in potato chips by low-temperature vacuum frying[J]. Journal of Food Science,2004,69(8).
    [9]
    李心刚, 李惟毅, 金志军, 等. 固态食品常压吸附流化冷冻干燥的研究[J]. 天津化工,2000,14(1):8−11.
    [10]
    任广跃, 李晖, 段续, 等. 常压冷冻干燥技术在食品中的应用研究[J]. 食品研究与开发,2013,34(18):119−122. doi: 10.3969/j.issn.1005-6521.2013.18.030
    [11]
    冯明. 食品真空冷冻干燥技术在我国发展与对策探析[J]. 农业技术与装备学报,2019(10):26, 28.
    [12]
    王偲琦, 黄琳琳, 臧秀, 等. 低场核磁共振无损检测技术在水产品加工贮藏方面的应用[J]. 食品安全质量检测学报,2018,9(8):1725−1729. doi: 10.3969/j.issn.2095-0381.2018.08.001
    [13]
    Lv W, Zhang M, Bhandari B, et al. Smart NMR method of measurement of moisture content of vegetables during microwave vacuum drying[J]. Food & Bioprocess Technology,2017,10(12):2251−2260.
    [14]
    Fundo J F, Amaro A R, Carvalho A, et al. Fresh-cut melon quality during storage: an NMR study of water transverse relaxation time[J]. Journal of Food Engineering,2015,167:71−76. doi: 10.1016/j.jfoodeng.2015.03.028
    [15]
    张驰, 阮征. 低场核磁共振(LF-NMR)及其成像技术(MRI)在食品应用中的研究进展[C]. //广东省食品学会. 2018年广东省食品学会年会论文集. 2018: 119−125.
    [16]
    陈路平, 高杨文, 杨培强. 低场核磁共振成像分析技术与应用[J]. 现代科学仪器,2014(6):39−43.
    [17]
    段柳柳, 段续, 任广跃. 怀山药微波冻干过程的水分扩散特性及干燥模型[J]. 食品科学,2019,40(1):23−30. doi: 10.7506/spkx1002-6630-20180610-129
    [18]
    宋平, 徐静, 马贺男, 等. 利用低场核磁共振及其成像技术分析水稻浸种过程水分传递[J]. 农业工程学报,2016,32(17):274−280. doi: 10.11975/j.issn.1002-6819.2016.17.036
    [19]
    中华人民共和国国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准食品中水分的测定[S].2016.
    [20]
    师萱, 陈娅, 符宜谊, 等. 色差计在食品品质检测中的应用[J]. 食品工业科技,2009,30(5):373−375.
    [21]
    李娜, 李瑜. 利用低场核磁共振技术分析冬瓜真空干燥过程中的内部水分变化[J]. 食品科学,2016,37(23):84−88. doi: 10.7506/spkx1002-6630-201623014
    [22]
    宋朝鹏, 李生栋, 魏硕, 等. 低场核磁共振法测定烘烤过程中烟叶水分[J]. 中国烟草科学,2017,38(3):56−60.
    [23]
    Jin X, Van A H, Boom R M. Anomalies in moisture transport during broccoli drying monitored by MRI[J]. Faraday Discussions,2012,158(1):65−75.
    [24]
    朱文学, 尤泰斐, 白喜婷, 等. 基于低场核磁的马铃薯切片干燥过程水分迁移规律研究[J]. 农业机械学报,2018,49(12):364−370. doi: 10.6041/j.issn.1000-1298.2018.12.043
    [25]
    刘传菊, 汤尚文, 李欢欢, 等. 基于低场核磁共振技术的红薯微波干燥水分变化研究[J]. 食品科技,2019,44(8):58−64.
    [26]
    任永申, 郑尧, 雷蕾, 等. 低场核磁共振及成像技术分析天花粉干燥过程中水分变化规律[J]. 中南民族大学学报(自然科学版),2019,38(3):415−419.
    [27]
    王力敏, 王东阳, 王丹, 等. 木薯块根膨大期韧皮部和木质部比较蛋白组学初步研究[J]. 热带作物学报,2014,35(3):525−533. doi: 10.3969/j.issn.1000-2561.2014.03.020
    [28]
    吕豪, 吕为乔, 崔政伟, 等. 不同微波环境下苹果片干燥特性分析[J]. 农业机械学报,2018,49(S1):433−439. doi: 10.6041/j.issn.1000-1298.2018.S0.059
    [29]
    胡玉华, 王晓培, 石勇, 等. 真空冷冻干燥技术在方便食品中的应用[J]. 农产品加工,2017(22):48−50.
    [30]
    刘玉环. 胡萝卜片的真空冷冻干燥加工工艺及研究[J]. 食品科技,2006,31(3):52−54. doi: 10.3969/j.issn.1005-9989.2006.03.015
    [31]
    邓资靖. 紫薯全粉加工工艺研究[D]. 重庆: 西南大学, 2012.
  • Cited by

    Periodical cited type(8)

    1. 许欢怡,李泉岑,郑明锋,刘斌,吕峰,曾峰. 银耳多糖的结构、功能性及应用研究进展. 食品工业科技. 2024(04): 362-370 . 本站查看
    2. 马传贵,张志秀,冯杰,隋欣,贺宗毅. 食用菌多糖活性及应用研究. 食用菌. 2024(04): 1-5+9 .
    3. 张若妍,朱碧芬,尹浩,钟宇,王丹凤,邓云,章敏燕,张春蓉. 基于Stacking模型比较分析不同食用菌糖蛋白复合物的体外免疫活性. 中国食品添加剂. 2024(10): 90-99 .
    4. 向情儒,李文远,冯涛. 基于体外发酵的双孢菇膳食纤维及双孢菇粉对人体肠道菌群的调节作用. 食品工业科技. 2023(10): 130-137 . 本站查看
    5. 文丁苑,梁双敏,国琦,宋晓晓,葛长荣,肖智超. 榆黄菇多糖提取工艺优化及其免疫调节活性评价. 现代食品科技. 2023(10): 233-243 .
    6. 李锦弘,郑慧珍,陈慧,刘书来,顾赛麒,王芮,相兴伟. 牡蛎肽对RAW264.7巨噬细胞的免疫调节作用. 食品与发酵工业. 2023(22): 49-56 .
    7. 王文丽,张金玲,魏亚宁,桑雨梅,薛宏坤. 天然多糖提取、纯化及生物活性研究进展. 食品工业科技. 2022(22): 470-480 . 本站查看
    8. 李佳丹,詹柴,王凯,徐志豪. 城市微型食用菌工厂控制系统设计与应用. 南方农业. 2021(22): 21-24+29 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return