LI Han, YANG Weiling, YANG Zongling, FAN Fangyu, WANG Changming. Physicochemical Properties and Structural Characterization of Lignin from Camellia oleifera Shell[J]. Science and Technology of Food Industry, 2021, 42(4): 33-38. DOI: 10.13386/j.issn1002-0306.2020050136
Citation: LI Han, YANG Weiling, YANG Zongling, FAN Fangyu, WANG Changming. Physicochemical Properties and Structural Characterization of Lignin from Camellia oleifera Shell[J]. Science and Technology of Food Industry, 2021, 42(4): 33-38. DOI: 10.13386/j.issn1002-0306.2020050136

Physicochemical Properties and Structural Characterization of Lignin from Camellia oleifera Shell

More Information
  • Received Date: May 12, 2020
  • Available Online: March 01, 2021
  • In order to make full use of the resources of Camellia oleifera shell,this research using Camellia oleifera shell as raw material,the lignin was extracted from Camellia oleifera shell by acetic acid method and alkaline method,respectively. The basic components,physicochemical properties and structural characterization of acetic acid lignin and alkaline lignin were analyzed. The results showed that acetic acid lignin had a lower purity(91.87%)and higher purity of alkaline lignin(93.37%),and the content of[C]and fixed carbon in acetic acid lignin was higher. Antioxidant activity investigation showed that the DPPH radical scavenging index of the extracted acetic acid lignin and alkaline lignin was higher than that of crude dietary fiber. Compared with alkaline lignin,the water holding capacity and swelling capacity of acetic acid lignin were increased by 59.49% and 55.36%,respectively. The binding capacity of saturated fat and unsaturated fat were increased by 5.06% and 2.24%,respectively. The DPPH radical scavenging activity was increased by 10.50%. And the moisture absorption was decreased by 28.14%.Meanwhile,the UV-visible spectra(UV)and infrared spectra(IR)analyses showed that the acetic acid lignin and alkaline lignin are mainly composed of guaiacyl and syringyl,and the guaiacyl content in acetic acid lignin was higher,while the syringyl content in alkaline lignin was higher. Thermogravimetric analysis showed that the thermal stability of acetic acid lignin was higher than that of alkaline lignin,and was more suitable for the preparation of high temperature and heat resistant materials.
  • [1]
    Tan M J,Luo L,Wu Z Q,et al. Pelletization of Camellia oleifera Abel.shell after storage:Energy consumption and pellet properties[J]. Fuel Processing Technology,2020,201:106337.
    [2]
    淦永鉴,李旭,杨莉琳,等.油茶籽壳提取物抗氧化及抗癌活性研究[J]. 食品工业科技,2015,36(8):171-174

    ,182.
    [3]
    Zhang L X,He Y F,Zhu Y J,et al. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst[J]. Bioresource Technology,2018,249:536-541.
    [4]
    Sun Y C,Wang M,Sun R C.Toward an understanding of inhomogeneities in structure of lignin in green solvents biorefinery.part 1:Fractionation and characterization of lignin[J]. ACS Sustainable Chemistry & Engineering,2015,3(10):2443-2451.
    [5]
    龚卫华,胡强,向卓亚,等.麻竹笋笋壳醋酸木质素结构特性及抗氧化性[J]. 精细化工,2017,34(12):1417-1422.
    [6]
    崔晓芳,李伟阳,魏婷婷,等.微波辅助提取油茶果壳木质素工艺优化[J]. 食品科学,2011,32(8):98-102.
    [7]
    Xie F,Gong S X,Zhang W,et al. Potential of lignin from Canna edulis Ker residue in the inhibition of α-d-glucosidase:Kinetics and interaction mechanism merging with docking simulation[J]. International Journal of Biological Macromolecules,2017,95:592-602.
    [8]
    龚卫华,马玥,吕霞,等.葵花籽壳木质素的结构分析及抗氧化活性[J]. 食品科学,2017,38(7):23-28.
    [9]
    张坤.玉米秸秆木质素提取表征及应用研究[D].长春:长春工业大学,2015:4-22.
    [10]
    Gong W H,Xiang Z Y,Ye F Y,et al. Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo(Dendrocalamus latiforus)[J]. Industrial Crops and Products,2016,91:340-349.
    [11]
    Rodríguez-Gutiérrez G,Rubio-Senent F,Lama-Muñoz A,et al. Properties of lignin,cellulose,and hemicelluloses isolated from olive cake and olive stones:Binding of water,oil,bile acids,and glucose[J]. Journal of Agricultural and Food Chemistry,2014,62(36):8973-8981.
    [12]
    陈利梅,李德茂,李燕.不同干燥方式对小麦麸皮膳食纤维理化性质的影响研究[J]. 食品工业科技,2010,31(4):132-133

    ,139.
    [13]
    梁国治.木质素加氢液化溶剂效应研究[D].淮南:安徽理工大学,2007:19-25.
    [14]
    谭惠珊.碱法制浆黑液中木质素的提取与纯化[D].天津:天津科技大学,2017:25-41.
    [15]
    李楠,周婷婷,耿莉莉,等.棉杆有机溶剂型木质素的结构表征与分析[J]. 广东化工,2015,42(15):45-46

    ,53.
    [16]
    秦丽元,张世慧,高忠志,等.生物炭与木质素混合成型及其燃烧特性研究[J]. 农业机械学报,2017,48(4):276-283.
    [17]
    Cheikh Rouhou M,Abdelmoumen S,Thomas S,et al. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets(Opuntia ficus indica):Structural and microstructural studies[J]. International Journal of Biological Macromolecules,2018,116:901-910.
    [18]
    龚卫华,向卓亚,叶发银,等.麻竹笋笋壳中木质素的理化特性[J]. 食品科学,2017,38(9):59-65.
    [19]
    Luo X L,Wang Q,Fang D Y,et al. Modification of insoluble dietary fibers from bamboo shoot shell:Structural characterization and functional properties[J]. International Journal of Biological Macromolecules,2018,120:1461-1467.
    [20]
    Zhu Y,Chu J X,Lu Z X,et al. Physicochemical and functional properties of dietary fiber from foxtail millet(Setaria italic)bran[J]. Journal of Cereal Science,2018,79:456-461.
    [21]
    Li Z L,Ge Y Y.Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures[J]. International Journal of Biological Macromolecules,2012,51(5):1116-1120.
    [22]
    Zhao X B,Wen J L,Chen H M,et al. The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production[J]. Renewable Energy,2018,128:200-209.
    [23]
    Jahan M S,Chowdhury D A N,Islam M K,et al. Characterization of lignin isolated from some nonwood available in Bangladesh[J]. Bioresource Technology,2007,98(2):465-469.
    [24]
    付跃进,杨昇,王方骏,等.核桃壳木质素的结构研究[J].林业工程学报,2018,32(3):88-94.
    [25]
    Elsayed M,Abomohra A E F,Ai P,et al. Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production:Comparison of structural properties and energy output[J]. Bioresource Technology,2018,268:183-189.
    [26]
    周静,沈葵忠,房桂干,等.响应面优化碱醇预处理麦草酶解效率及木质素组分分离[J]. 食品工业科技,2018,39(14):81-86.
    [27]
    王则祥,李航,谢文銮,等.木质素基本结构、热解机理及特性研究进展[J]. 新能源进展,2020,8(1):6-14.
    [28]
    陈磊,陈汉平,陆强,等.木质素结构及热解特性[J]. 化工学报,2014,65(9):3626-3633.
  • Cited by

    Periodical cited type(7)

    1. 陈金足,韦晓雯,农晶晶,韩丽芳,冯学,唐婷范,李利军,程昊. 氢氧化镁-活性炭复合材料的制备及其对糖浆脱色工艺优化. 食品工业科技. 2025(01): 201-207 . 本站查看
    2. 蔡全龙,程昊,唐婷范,张文康,卫政涛,李利军. 双极性MgO纳米棒的制备、表征及其在原糖回溶糖浆脱色的应用. 食品研究与开发. 2025(03): 125-131 .
    3. 干莉娜,张文康,赵家欣,唐婷范,卫政涛,程昊. 壳聚糖-甘蔗渣活性炭复合材料的制备及在糖汁清净中的应用. 中国调味品. 2024(04): 25-31 .
    4. 林华,唐婷范,陈金足,苏萍萍,程昊. 水热法制备多孔硅酸镁及其对糖汁的脱色性能分析. 广西糖业. 2024(06): 419-425 .
    5. 唐婷范,任逸,朱家庆,黄芳丽,程昊. 氢氧化镁对蔗糖溶液中单宁酸的吸附性能研究. 中国调味品. 2022(08): 46-50 .
    6. 田鑫莉 ,张文康 ,李利军 ,卫政涛 ,程昊 . 硅酸镁-石灰乳法对原糖回溶糖浆脱色性能的研究. 食品工业. 2022(09): 51-55 .
    7. 王琪浩,王余莲,王楠,李闯,张俊,朱益斌,刘珈伊,时天骄,林永瑾,田伊笛,苏德生,袁志刚. 高比表面积羟基硅酸镁的制备及其形成机理研究. 沈阳理工大学学报. 2022(06): 58-65 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (282) PDF downloads (16) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return