ZHANG Lulu, WU Jianwen, LIU Huiqin, WANG Houzheng, LI Guiqing, LU Shunzhong, LI Qiuting. Composition Analysis of Xilin Fire Ginger Oleoresins[J]. Science and Technology of Food Industry, 2021, 42(6): 226-232. DOI: 10.13386/j.issn1002-0306.2020050113
Citation: ZHANG Lulu, WU Jianwen, LIU Huiqin, WANG Houzheng, LI Guiqing, LU Shunzhong, LI Qiuting. Composition Analysis of Xilin Fire Ginger Oleoresins[J]. Science and Technology of Food Industry, 2021, 42(6): 226-232. DOI: 10.13386/j.issn1002-0306.2020050113

Composition Analysis of Xilin Fire Ginger Oleoresins

More Information
  • Received Date: May 10, 2020
  • Available Online: March 15, 2021
  • Took dry ginger slices of Xilin ginger as raw materials, ginger oleoresin extracted by petroleum ether(PEGO) and ginger oleoresin extracted by absolute ethanol(AEGO) were obtained by Soxhlet extraction to study their compositions. PEGO and AEGO were identified 46 and 38 volatile components by GC-MS, respectively. They mainly were terpenes which included(-) -zingiberene, β-sesquiphellandrene, α-farnesene, β-bisabolene, α-curcumene, α-citral, β-citral, β-phellandrene, eucalyptol, endo-borneol, and pungents which included 6-gingerol, 6-shogaol, cis-8-shogaol.In addition, a large numberof fatty acids, total phenols, flavonoids, and sterols as non-volatile components were also detected.Their main fatty acids were palmitic acid, linoleic acid, caprylic acid, lauric acid, stearic acid, low-caprylic acid, myristic acid, trans-oleic acid, oleic acid and so on, linoleic acid and oleic acid were dominant unsaturated fatty acid, and the contents of linoleic acid of them were above 20%;In PEGO and AEGO, the total phenolic content was 118.61±1.55 and 105.36±1.09 mg GAE/g;flavonoid content was 15.72±0.51 and 13.36±0.03 mg RE/g;the total sterol content was 4.86±0.02 and 3.54±0.07 mg/g, and all made up of campesterol, stigmasterol and β-sitosterol. It could be concluded that oleoresins from Xilin fire ginger contained the compounds which contribute to nutrition, distinctive flavor and bioactive function, and the extraction solvent had a certain influence on the composition and content of ginger oleoresins.
  • [1]
    黄皓,周生茂,尚小红,等. 西林火姜健康组培苗快繁体系的建立[J]. 长江蔬菜,2016,32(20):25-29.
    [2]
    沈伟,岑湘涛,韦海婷,等. 西林火姜枸杞复合型饮料的研制[J]. 农产品加工,2019,17(24):1-3.
    [3]
    Lovesuw. 西林火姜[EB/OL].(2018-09-02)[2020-03-26]. https://baike.so.com/doc/7794709-8068804.html.
    [4]
    王忠宾. 姜油提取方法及工艺参数研究[D]. 泰安:山东农业大学,2012.
    [5]
    孙亚青. 姜精油的提取、分析及纯化研究[D]. 北京:中国农业大学,2004.
    [6]
    Gong Y,Plander S,Xu H,et al. Supercritical CO2 extraction of oleoresin from marigold(Tagetes erecta L.)flowers and determination of its antioxidant components with online HPLC-ABTS(center dot+)assay[J]. Journal of the Science of Food and Agriculture,2011,91(15):2875-2881.
    [7]
    Gan Z,Liang Z,Chen X,et al. Separation and preparation of 6-gingerol from molecular distillation residue of Yunnan ginger rhizomes by high-speed counter-current chromatography and the antioxidant activity of ginger oils in vitro[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2016,1011:99-107.
    [8]
    熊华. 不同提取方法生姜提取物中成分的比较研究[D]. 成都:西华大学,2006.
    [9]
    魏晓珊,邓乾春,张逸,等. 亚麻籽油中植物甾醇含量的测定[J]. 中国油脂,2015,40(11):107-111.
    [10]
    张水平,谷风林,吴桂苹,等. 胡椒果与胡椒叶精油化学成分分析[J]. 热带作物学报,2014,35(2):387-395.
    [11]
    王强伟,史先振,王洪新,等. 鲜姜、姜粉和姜汁饮料中挥发性风味物质分析[J]. 食品与发酵工业,2015,41(4):174-179.
    [12]
    周雪敏,朱科学,杨继敏,等. 超临界法萃取的黑胡椒油树脂成分分析[J]. 热带农业科学,2016,36(2):54-58.
    [13]
    陈坚生,雷登凤,高合意. 生姜在化妆品中的应用现状[J]. 香料香精化妆品,2018,45(1):72-75.
    [14]
    Siripoltangman N,Chickos J. Vapor pressure and vaporization enthalpy studies of the major components of ginger,alpha-zingiberene,beta-sesquiphellandrene and(-)ar curcumene by correlation gas chromatography[J]. Journal of Chemical Thermodynamics,2019,138:107-115.
    [15]
    Bailey-Shaw Y A,Williams L A D,Junor G O,et al. Changes in the contents of oleoresin and pungent bioactive principles of Jamaican ginger(Zingiber officinale Roscoe.)during maturation[J]. Journal of Agricultural and Food Chemistry,2008,56(14):5564-5571.
    [16]
    Rafi M,Lim L W,Takeuchi T,et al. Simultaneous determination of gingerols and shogaol using capillary liquid chromatography and its application in discrimination of three ginger varieties from Indonesia[J]. Talanta,2013,103:28-32.
    [17]
    王强伟,史先振,Md Ramim Tanver Rahman,等. 不同干燥工艺对生姜中5种姜辣素含量的影响[J]. 食品与发酵工业,2015,41(8):97-100.
    [18]
    Kou X,Li X,Rahman M R T,et al. Efficient dehydration of 6-gingerol to 6-shogaol catalyzed by an acidic ionic liquid under ultrasound irradiation[J]. Food Chemistry,2017,215:193-199.
    [19]
    张春娥,张惠,刘楚怡,等. 亚油酸的研究进展[J]. 粮油加工,2010,40(5):18-21.
    [20]
    李昌模,张钰斌,李帅,等. 反式脂肪酸生成机理的研究[J]. 中国粮油学报,2015,30(7):141-146.
    [21]
    楼乔明,李来好,陈胜军,等. 油酸和亚油酸异构体的气相色谱-质谱分析[J]. 中国食品学报,2017,17(10):241-247.
    [22]
    Mozaffarian D,Aro A,Willett W C. Health effects of trans-fatty acids:Experimental and observational evidence[J]. European Journal of Clinical Nutrition,2009,632:S5-S21.
    [23]
    徐星. 植物油氧化过程中脂肪酸和挥发性成分变化的研究[D]. 浙江工商大学,杭州,2013.
    [24]
    Yashin A,Yashin Y,Xia X,et al. Antioxidant activity of spices and their impact on human health:A review[J]. Antioxidants,2017,6(703).
    [25]
    Elhamirad A H,Zamanipoor M H. Thermal stability of some flavonoids and phenolic acids in sheep tallow olein[J]. European Journal of Lipid Science & Technology,2012,114(5):602-606.
    [26]
    郎宇曦,马岩,李斌,等. 黄酮类化合物与其他化合物相互作用的研究进展[J]. 食品科学,2018,39(9):258-264.
    [27]
    Bellik Y,Benabdesselam F,Ayad A,et al. Antioxidant activity of the essential oil and oleoresin of zingiber officinale roscoe as affected by chemical environment[J]. International Journal of Food Properties,2013,16(6):1304-1313.
    [28]
    Murthy P S,Gautam R,Naik P J. Ginger oleoresin chemical composition,bioactivity and application as bio-preservatives[J]. Journal of Food Processing and Preservation,2015,39(6):1905-1912.
    [29]
    Jaiswal S G,Naik S. Contribution of agricultural produce spice Zingiber officinale to a sustainable food system:Green extraction and stability study of antioxidant compounds[J]. Open Agriculture,2018,3(1):326-338.
    [30]
    徐丽萍,徐艳阳,韩许天格,等. 纤维素酶-超声辅助提取姜辣素的工艺优化[J]. 中国调味品,2016,41(1):3-9.
    [31]
    张芳. 铜陵白姜姜酚的制备、抗癌活性及机理[D]. 合肥:合肥工业大学,2017.
    [32]
    杨春英,刘学铭,陈智毅,等. 气相色谱-质谱联用法测定14种食用植物油中的植物甾醇[J]. 中国粮油学报,2013,28(2):123-128.
    [33]
    俞乐,黄健花,王兴国,等. 食用植物油中的有益微量伴随物[J]. 粮食科技与经济,2018,43(2):99-101.
    [34]
    管伟举,谷克仁. 植物甾醇研究进展[J]. 粮食与油脂,2007,20(3):5-9.
  • Cited by

    Periodical cited type(9)

    1. 文舒瑶,郭宝松,梁悦琪,卫晓涵,陈映羲,纪超凡,张素芳. 水开菲尔粒中产酸菌株的筛选及其在无醇发酵麦芽汁中的应用. 食品与发酵工业. 2025(08): 60-67+76 .
    2. 严德林,黄雷,邱婧,陈世浪,梅芷晴,张凯旋,杨存义,高向阳. PB试验结合BBD响应面法优化纳豆γ-聚谷氨酸发酵条件. 食品工业科技. 2024(01): 208-215 . 本站查看
    3. 叶延欣,秦鹏,别鹏坤,张书斌,李蕾蕾,陈艳艳,张道雷. 纳豆芽孢杆菌Bacillus natto NK4液态发酵产纳豆激酶的工艺优化. 河南城建学院学报. 2024(02): 103-108+132 .
    4. 叶丽莎,高梦迪,程婉冰,庞凤萍,邓立高,李坚斌. 枯草芽孢杆菌产纳豆激酶的复合诱变选育及发酵条件优化. 应用化工. 2024(11): 2562-2568 .
    5. 王淼霜,仝艳军,蒋雨桥,杨瑞金. 苦荞对发酵豆乳纳豆激酶活力、风味及抗氧化活性的影响. 食品与生物技术学报. 2023(07): 62-71 .
    6. 王刚,王芝玉,安荣荣,滕玉婷,古梅,刘霞,高慧娟,董瑞丽. 固态发酵条件对纳豆激酶活性的影响及发酵条件的优化. 粮食加工. 2023(05): 33-37 .
    7. 陈俊煌. 纳豆激酶高产菌株的选育及其酶学活性研究. 生物化工. 2023(05): 152-155+159 .
    8. 高梦迪,苏钱琙,李杰,樊学晶,王朝阳,邓立高,李坚斌. 纳豆激酶微生物生产研究进展. 大豆科学. 2022(06): 740-746 .
    9. 余薇,邓小华,刘婷,潘笃杰,郑巧双. 一株益生型枯草芽孢杆菌液态发酵条件优化. 现代食品. 2022(20): 84-86 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (241) PDF downloads (23) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return