CHEN Qiuyan, HAO Xiran, WANG Yuan, DU Juan, AN Xiaoping, QI Jingwei. Optimization of Fermentation Process for Feruloylated Glycosides from Wheat Bran and Evaluation of Its Antioxidant and Probiotic Activities in Vitro[J]. Science and Technology of Food Industry, 2021, 42(2): 138-145,160. DOI: 10.13386/j.issn1002-0306.2020040362
Citation: CHEN Qiuyan, HAO Xiran, WANG Yuan, DU Juan, AN Xiaoping, QI Jingwei. Optimization of Fermentation Process for Feruloylated Glycosides from Wheat Bran and Evaluation of Its Antioxidant and Probiotic Activities in Vitro[J]. Science and Technology of Food Industry, 2021, 42(2): 138-145,160. DOI: 10.13386/j.issn1002-0306.2020040362

Optimization of Fermentation Process for Feruloylated Glycosides from Wheat Bran and Evaluation of Its Antioxidant and Probiotic Activities in Vitro

More Information
  • Received Date: May 05, 2020
  • Available Online: January 20, 2021
  • The fermentation process for feruloylated glycosides(FGs)from wheat bran was optimized. The in vitro probiotic and antioxidant activities of the extracted FGs from fermented wheat bran were analyzed. Lactobacillus plantarum CGMCC 1.2437,Bacillus subtilis CGMCC 1.0892,Bacillus licheniformis CGMCC 1.813,Saccharomyces cerevisiae CGMCC 2.119 were used as starter strains. The suitable starter strains were screened by different single starter strain and starter strains combination. The effects of level of inoculum,incubation temperature,incubation duration,material to water ratio on the FGs yield were investigated. The fermentation conditions were further optimized using response surface methodology. The results showed that FGs yield was highest when the combination of B. subtilis,B. licheniformis and S cerevisiae were as starter strain. The optimum fermentation conditions were level of incubation temperature 42.5 ℃,incubation duration 58.5 h,inoculum 10.7%,material to water ratio 1:1.16 (g/mL). Under this optimum fermentation condition,the FGs yield was 1273.18 nmol/g. The extracted FGs from fermented wheat bran had strong DPPH radicals scavenging capacity(87.42%,1 mg/mL),hydroxyl radicals scavenging capacity(33.68%,4 mg/mL)and reducing power(1.078,4 mg/mL). The extracted FGs from fermented wheat bran promoted the proliferation of Streptococcus thermophiles and Lactobacillus plantarum. In conclusion,the FGs from wheat bran fermented by B. subtilis,B. licheniformis and S cerevisiae could exert antioxidant and prebiotic activity.
  • [1]
    Koulouris A I,Luben R,Banim P,et al. Dietary fiber and the risk of pancreatic cancer[J]. Pancreas,2019,48(1):121-125.
    [2]
    Lee J M,Calkins M J,Chan K,et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis[J]. Journal of Biological Chemistry,2003,278(14):12029-12038.
    [3]
    张欣,高增平.阿魏酸的研究进展[J].中国现代中药,2020,22(1):138-147.
    [4]
    孙晓春,李铂,黄文静,等.当归醇提物阿魏酸含量和体外抗氧化性检测[J].陕西农业科学,2019,65(1):30-32.
    [5]
    Kim Y,Jeong S J,Seo C S,et al. Simultaneous determination of the traditional herbal formula ukgansan and the in vitro antioxidant activity of ferulic acid as an active compound[J]. Molecules,2018,23(7):1659.
    [6]
    邬钰,陈珺.阿魏酸在衰老相关骨代谢疾病治疗中的应用[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(4):395-399.
    [7]
    周静,王静,孙宝国.阿魏酸糖酯合成的研究进展[J].食品工业科技,2012,33(16):392-395.
    [8]
    Rondim,Peyrat-maillard M N,Marsset-bagliena,et al. Bound ferulic acid from bran is more bioavailable than the free compound in rat[J]. Agric Food Chem,2004,52(13):4338-4343.
    [9]
    赵冰,张可,王静,等.阿魏酸糖酯体外抗氧化性质的研究[J].食品科学,2010,31(21):94-97.
    [10]
    Yuan X P,Wang J,Yao H Y,et al. Feruloyl oligosaccharides stimulate growth of Bifidobacterium bifidum[J]. Anaerobe,2005,11(4):225-229.
    [11]
    袁小平,王静,姚惠源.小麦麸皮阿魏酰低聚糖对红细胞氧化性溶血抑制作用的研究[J].中国粮油学报,2005,20(1):13-16.
    [12]
    Ou Si,Jackson G M,Jiao X,et al. Protection against oxidative stress in diabetic rats by wheat bran feruloyl oligosaccharides[J].Journal of Agricultural and Food Chemistry,2007,55(8):3191-3195
    [13]
    李林轩,李硕,王晓芳,等.小麦麸皮理化特性与深加工技术探讨[J].粮食加工,2019,44(4):20-23.
    [14]
    蔺艳君,刘丽娅,钟葵,等.不同来源小麦麸皮营养成分及酚类物质含量的比较[J].现代食品科技,2014,30(12):194-200.
    [15]
    赵文红,许慧颖,陈晖,等.高聚合度麦麸阿魏酸糖酯的组成特征及其自由基清除能力研究[J].河南工业大学学报(自然科学版),2018,39(5):12-17,75.
    [16]
    张丽娜. 麦麸阿魏酸糖酯的制备及其抗氧化活性研究[D].郑州:河南工业大学,2016.
    [17]
    Rose D J,George,Inglett. Two-stage hydrothermal processing of wheat(Triticum aestivum)bran for the production of feruloylated arabinoxylooligosaccharides[J].Food Chemistry,2010,58(10):6427-6432.
    [18]
    Rose D J,George,Inglett. Production of feruloylated arabinoxylo-oligosaccharides from maize(Zea mays)bran by microwave-assisted autohydrolysis[J]. Food Chemistry,2010,119(4):1613-1618.
    [19]
    Li K Y,Lai P,Lu S,et al. Optimization of acid hydrolysis conditions for feruloylated oligosaccharides from rice bran through response surface methodolgy[J]. Journal of Agricultural & Food Chemistry,2008,56(19):8975-8978.
    [20]
    李向菲,刘小琼,方芳,等.酶解米糠制备低聚糖阿魏酸酯及其抗氧化活性分析[J].广东农业科学,2018,45(6):90-95.
    [21]
    解春艳. 茶薪菇发酵制备麦麸膳食纤维与阿魏酰低聚糖及其生物活性研究[D].南京:南京农业大学,2010.
    [22]
    余晓红. 出芽短梗霉发酵麦麸制备阿魏酰低聚糖及其生物活性研究[D]. 南京:南京农业大学,2012
    [23]
    卜雯丽,李凤伟,王杰,等.出芽短梗霉固态发酵啤酒糟制备阿魏酰低聚糖和膳食纤维工艺研究[J].中国酿造,2019,38(5):38-43.
    [24]
    安晓萍,王园,齐景伟,等.基于响应面法分析菌比和辅料对发酵麸皮多糖含量的影响[J].食品工业科技,2018,39(3):122-126.
    [25]
    黄越,周春晖,黄惠华.不同提取方法猴头菇粗多糖的表征及其抗氧化活性的比较[J].食品工业科技,2017,38(3):80-86.
    [26]
    张倩茹.玉米芯多糖的菌酶协同发酵工艺及其体外活性研究[D]. 呼号浩特:内蒙古农业大学,2018.
    [27]
    张婧涵,姚忠,孙芸,等.桑木耳多糖提取工艺优化及其益生活性和抗氧化活性评价[J].现代食品科技,2018,34(4):143-149.
    [28]
    任勰珂,陈莉,卢红梅,等.多菌种混合固态发酵秸秆的研究[J].食品工业科技,2017,38(7):130-134.
    [29]
    周阳.混菌固态发酵黄芪工艺条件的优化研究[J].食品工业,2018,39(4):23-27.
    [30]
    鞠兴荣,王雪峰,何荣,等.混菌固态发酵生产菜籽肽工艺条件优化[J].食品科学,2012,33(11):231-236.
    [31]
    李翔宇,马慧,焦冠儒,等.混菌固态发酵麸皮生产微生态蛋白饲料工艺研究[J].农业科技与装备,2017(7):48-51.
    [32]
    李爱江,张敏,辛莉.发酵生产过程中发酵条件对微生物生长的影响[J]. 农技服务,2007(4):128-130.
    [33]
    姜晓阳,胡迎芬,郑靖义,等.混菌固态发酵花生粕的工艺优化[J].食品工业科技,2019,40(22):120-124.
    [34]
    Xu Y Q,Cai F,Yu Z Y,et al. Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity[J]. Food Chemistry,2016,194(194):650-658.
    [35]
    Raguraman V,Abraham,L S,Jyotsna,et al. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model.[J]. Carbohydrate polymers,2019,203(203):441-449
    [36]
    齐希光,张晖,王立,等.麦麸阿魏酸糖酯抗氧化性的研究[J].食品工业科技,2011,32,(8):71-73

    ,76.
    [37]
    Liu Q,Cao X,Zhuang X,et al. Rice bran polysaccharides and oligosaccharides modified by Grifola frondosa fermentation:Antioxidant activities and effects on the production of NO[J]. Food Chemistry,2017,223(15):49-53.
    [38]
    Soares J R,Dins T C P,Antono P C,et al. Antioxidant activities of some extracts of Thymus zygis[J]. Free Radical Research,1997,26(5):469-478.
    [39]
    Stewart M L,Timm D A,Slavin J L. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system[J]. Nutrition Research,2008,28(5):329-334.
    [40]
    Wang X,Huang M,Yang F,et al. Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro[J]. Carbohydrate Polymers,2015,125(125):232-240.
  • Cited by

    Periodical cited type(4)

    1. 汪发明,张贞炜,孙玉鼎,曹月刚,贾利蓉. 冷榨与温榨花生蛋白粉功能特性的比较. 食品科技. 2024(03): 147-154 .
    2. 洪林欣,尹开平,孙乐常,林端权,何文雄,翁凌,曹敏杰,张凌晶. 不同干燥方式对南极磷虾分离蛋白结构及功能特性的影响. 集美大学学报(自然科学版). 2024(03): 211-221 .
    3. 梁英杰,杨晨,陈哲,郑竟成,何东平,王澍,雷芬芬. 球磨处理对南瓜籽蛋白结构的影响. 中国油脂. 2023(05): 20-25 .
    4. 卢亚东,张成楠,李秀婷,陈振家,王愈,张治华,牛晓峰. 不同干燥方式燕麦蛋白的性质及对肌原纤维蛋白凝胶特性的影响. 食品科学技术学报. 2021(06): 53-63 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (293) PDF downloads (18) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return