LI Li, SUN Zhihui, MIAO Qinghua, GONG Xue, ZHAO Yifan. New Research Progress of High Pressure Processing Technology in Food Industry[J]. Science and Technology of Food Industry, 2021, 42(6): 337-342. DOI: 10.13386/j.issn1002-0306.2020040357
Citation: LI Li, SUN Zhihui, MIAO Qinghua, GONG Xue, ZHAO Yifan. New Research Progress of High Pressure Processing Technology in Food Industry[J]. Science and Technology of Food Industry, 2021, 42(6): 337-342. DOI: 10.13386/j.issn1002-0306.2020040357

New Research Progress of High Pressure Processing Technology in Food Industry

More Information
  • Received Date: May 05, 2020
  • Available Online: March 15, 2021
  • High pressure processing(HPP) is a kind of non-thermal processing technology. Through rapid and uniform pressure on the whole food, the purpose of sterilization, preservation and modification of food can be achieved. Compared with other treatment methods, ultra-high pressure treatment has the advantages of low pollution, less nutrient loss and good flavor retention. In this paper, the research progress of HPP in recent years is reviewed mainly from the aspects: The mechanism and development of high pressure processing technology in food industry, sterilization, protein modification, shellfish shells, material extraction. The application of high pressure processing in food industry is analyzed, the problems of high pressure processing in food industry are summarized, and the future development direction of high pressure processing is put forward.
  • [1]
    Balasubramaniam V M,Martinez-Monteagudo S I. Principles and application of high pressure-based technologies in the food industry[J]. Ammual Review of Food Science and Technology,2015,6:435-462.
    [2]
    Daniel F F. A short history of research and development efforts leading to the commercialization of high-pressure processing of food[J]. Food Engineering Series,2016:19-36.
    [3]
    Huang Hsiao-Wen,Hsu Chiao-Ping,Wang Chung-Yi. Healthy expectations of high hydrostatic pressure treatment in food processing industry[J]. Journal of Food and Analysis,2020,28(1):1-13.
    [4]
    Huang H W,Wu S J,Lu J K,et al. Current status and future trends of high-pressure processing in food industry[J]. Food Control,2017,72:1-8.
    [5]
    许世闯,徐宝才,奚秀秀,等. 超高压技术及其在食品中的应用进展[J]. 河南工业大学学报(自然科学版),2016,37(5):111-117.
    [6]
    Huang H W,Lung H M,Yang B B,et al. Responses of microorganisms to high hydrostatic pressure processing[J]. Food Control,2014,40(31):250-259.
    [7]
    Mircea-Valentin M,Ovidiu M,Victor B. High pressure processing in food industry-characteristics and applications[J]. Agriculture and Agricultural Science Procedia,2016,10:377-383.
    [8]
    Theofania T,Liliana A,Patricia I S P,George D. High pressure processing of European sea bass(Dicentrarchus labrax)fillets and tools for flesh quality and shelf life monitoring[J]. Journal of Food Engineering,2019,262:83-91.
    [9]
    袁超,赵峰,周德庆,等. 超高压处理对冷藏鲍鱼保鲜效果与品质变化的影响[J]. 食品工业科技,2017(17):312-321.
    [10]
    孙思成,刘璐璐,徐新星,等. 适宜超高压处理条件脱除大蒜臭味保持抗氧化和抑菌能力[J]. 农业工程学报,2017,33(19):308-314.
    [11]
    Simonin H,Duranton F,Lamballerie M. New insights into the high pressure processing of meat and meat products[J]. Comprehensive Reviews in Food Science and Food Safety,2012,11:285-306.
    [12]
    Isabela R,Marco A T,Franciele R C. Effect of high pressure processing on physicochemical and microbiological properties of marinated beef with reduced sodium content[J]. Innovative Food Science & Emerging Technologies,2016,38:328-333.
    [13]
    Laurence P,Gina V,Marie L. Applications of high pressure for healthier foods[J]. Current Opinion in Food Science,2017,16:21-27.
    [14]
    邱伟芬,江汉湖. 食品超高压杀菌技术极其研究进展[J].食品科学,2001,22(5):81-84.
    [15]
    王蓉蓉,孙传范. 超高压杀菌机制研究进展[J]. 高压物理学报,2012,26(6):700-708.
    [16]
    Fabiano A O,Cabral N. Effect of high pressure on fish meat quality-A review[J].Trends in Food Science & Technology,2017,66:1-19.
    [17]
    李汴生. 超高压处理蛋白质和多糖胶体特性的变化及其机理研究[D]. 广州:华南理工大学,1997.
    [18]
    Shi X J,Zou H N,Sun S,et al. Application of high-pressure homogenization for improving the physicochemical,functional and rheological properties of myofibrillar protein[J]. International Journal of Biological Macromolecules,2019,138:425-432.
    [19]
    Zhang J,Peng X,Jonas A,Jonas J. NMR study of the cold,heat,and pressure unfolding of ribonuclease A[J]. Biochemistry,1995,34:8631-8641.
    [20]
    Nash D P,Jonas J. Structure of pressure-assisted cold denatured lysozyme and comparison with lysozyme folding intermediates[J]. Biochemistry,1997,36:14375-14383.
    [21]
    Smeller L. Pressure-temperature phase diagram of biomolecules[J]. Biochim Biophys Acta,2002,1595:11-29.
    [22]
    Valeria T,Marie L,Alain L B. Quality changes during the frozen storage of sea bass(Dicentrarchus labrax)muscle after pressure shift freezing and pressure assisted thawing[J]. Innovative Food Science and Emerging Technologies,2010,11:565-573.
    [23]
    Pérez-Santaescolástica C,Carballo J,Fulladosa E,et al. Influence of high-pressure processing at different temperatures on free amino acid and volatile compound profiles of dry-cured ham[J]. Food Research International,2019,116:49-56.
    [24]
    Mozhaev V V,Lange R,Kudryashova E V,et al. Application of high hydrostatic pressure for increasing activity and stability of enzymes[J]. Biotechnol. Bioeng,1996,52:320-331.
    [25]
    Masson P,Bec N,Frement M T,et al. Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine[J]. Eur J Biochem,2004,271:1980-1990.
    [26]
    Dallet S,Legoy M D. Hydrostatic pressure induces conformational and catalytic changes on two alcohol dehydrogenases but no oligomeric dissociation[J]. Biochim Biophys Acta,1996,1294:15-24.
    [27]
    Júnior B R C L,Tribst A A L,Bonafe C F S,et al. Determination of the influence of high pressure processing on calf rennet using response surface methodology:Effects on milk coagulation[J]. LWT-Food Science and Technology,2016,65:10-17.
    [28]
    Heinz V,Buckow R,Knorr D. Catalytic activity of b-amylase from barley in different pressure/temperature domains[J]. Biotechnol Prog,2005,21:1632-1638.
    [29]
    Buckow R,Heinz V,Knorr D. Two fractional model for evaluating the activity of glucoamylase from Aspergillus niger under combined pressure and temperature conditions[J]. Food Bioprod. Process,2005,83:220-228.
    [30]
    Buckow R,Heinz V,Knorr D. Effect of high hydrostatic pressure-temperature combinations on the activity of b-glucanase from barley malt[J]. J Inst Brew,2005,111:282-289.
    [31]
    Thevelein J M,Assche J A V,Heremans K,et al. Gelatinisation temperature of starch,as influenced by high pressure[J]. Carbohydr Res,1981,93:304-307.
    [32]
    Shigematsu T,Murakami M,Nakajima K,et al. Bioconversion of glutamic acid to γ-aminobutyric acid(GABA)in brown rice grains induced by high pressure treatment[J]. Japan Journal of Food Engineering,2010,11:189-199.
    [33]
    Li W H,Tian X L,Liu L P,et al. High pressure induced gelatinization of red adzuki bean starch and its effects on starch physicochemical and structural properties[J]. Food Hydrocolloids,2015,45:132-139.
    [34]
    Thiago S L,Ana L T J,Marcio S,et al. High pressure processing(HPP)of pea starch:Effect on the gelatinization properties[J]. LWT-Food Science and Technology,2017,76:361-369.
    [35]
    Xie F,Zhang W,Lan X H,et al. Effects of high hydrostatic pressure and high pressure homogenization processing on Carbohydrate Polymerscharacteristics of potato peel waste pectin[J]. Carbohydrate Polymers,2018,196:474-482.
    [36]
    Papathanasiou M M,Reineke K,Gogou E,et al. Impact of high pressure treatment on the available glucose content of various starch types:A case study on wheat,tapioca,potato,corn,waxy corn and resistant starch(RS3)[J]. Innovative Food Science and Emerging Technologies,2015,30:24-30.
    [37]
    Maria P,Massimiliano R,Margherita R,et al. Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species[J]. Food Chemistry,2019,274:281-290.
    [38]
    巩雪,常江. 超高压技术在贝类脱壳加工中的应用[J]. 食品工业科技,2016(15):394-396.
    [39]
    Campus M. High pressure processing of meat,meat products and seafood[J]. Food Engineering Reviews,2010,2:256-273.
    [40]
    Tem T D,Aberham H F,Nina G,et al. Effects of high pressure and ohmic heating on shell loosening,thermal and structural properties of shrimp(Pandalus borealis)[J]. Innovative Food Science and Emerging Technologies,2020,59.
    [41]
    杨绮云,鲍振东,孟爽. 食品超高压设备对贝类脱壳机理的研究[J]. 哈尔滨商业大学学报(自然科学版),2015,31(3):291-294.
    [42]
    崔燕,林旭东,康孟利,等. 超高压协同冷冻脱壳对南美白对虾品质的影响[J]. 现代食品科技,2018,34(10):171-178.
    [43]
    Song Y F,Lu Y,Ding H. Structural characteristics at the adductor muscle and shell interface in mussel[J]. Appl Biochem Biotechnol,2013,4:1203-1211.
    [44]
    廖智,孙琦,姜雨婷. 贝类闭壳肌-贝壳连接界面的分子组成及连接机制[J]. 浙江海洋大学学报(自然科学版),2018,37(4):313-319.
    [45]
    Elisabete M C A,Alexandre,Sara,et al. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction[J]. Food Research International,2019,115:167-176.
    [46]
    Zhang S,Zhu J,Wang C. Novel high pressure extraction technology[J]. International Journal of Pharmaceutics,2004,278:471-474.
    [47]
    Huang H W,Hsu C P,Yang B B,et al. Advances in the extraction of natural ingredients by high pressure extraction technology[J]. Trends in Food Science & Technology,2013,33:54-62.
    [48]
    Lee A R,Choi S H,Choi H W,et al. Optimization of ultra high pressure extraction(UHPE)condition for puffed ginseng using response surface methodology[J]. Food Science Biotechnology,2014,23:1151-1157.
    [49]
    Antonela N G,Jelena O,Vicenzia M,et al. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste[J]. Innovative Food Science & Technologies,2020,64.
    [50]
    Corrales M,Toepfl S,Butz P,et al. Extraction of anthocyanins from grape by-products assisted by ultrasonics,high hydrostatic pressure or pulsed electric fields:A comparison[J]. Innovative Food Science and Emerging Technologies,2008,9:85-91.
    [51]
    Guo X,Han D,Xi H,et al. Extraction of pectin from navel orange peel assisted by ultra-high pressure,microwave or traditional heating:A comparison[J]. Carbohydrate Polymers,2012,88(2):441-448.
    [52]
    Shin J S,Ahn S C,Choi S W,et al. Ultra high pressure extraction(UHPE)of ginsenosides from Korean Panax ginseng powder[J]. Food Science and Biotechnology,2012,19:743-748.
    [53]
    Xi J,Shen D,Zhao S,et al. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction[J]. International Journal of Pharmaceutics,2009,382:139-143.
    [54]
    Kurabachew S D,Luca F. Extraction of bioactives from food processing residues using techniques performed at high pressures[J]. Current Opinion in Food Science,2015,5:14-22.
  • Cited by

    Periodical cited type(10)

    1. 王萌. 食品非热加工技术研究进展. 食品安全导刊. 2024(04): 185-187+192 .
    2. 杨洪新. 农产品超高压加工技术研究与发展. 粮油与饲料科技. 2024(03): 182-184 .
    3. 李立. 超高压解冻对牛肉品质变化的影响研究. 食品安全质量检测学报. 2024(22): 294-300 .
    4. 王哲,董丽,胡小松,陈芳. 不同加工技术对西瓜汁风味影响研究进展. 现代食品科技. 2023(11): 310-322 .
    5. 周晨光,周瑶洁,李斌,胡煜骞,刘天睿,杨雯莉,石吉勇,邹小波. 米糠非热稳定化处理技术研究进展. 食品科学. 2023(23): 1-12 .
    6. 崔蓬勃,周剑,丁玉庭,刘建华. 水产品物理保鲜技术的最新研究进展. 浙江工业大学学报. 2022(03): 341-348 .
    7. 杨宝嘉,芦晶,吕加平,逄晓阳,张书文,刘妍妍. 母乳中胆盐激活脂肪酶性质及功能的研究进展. 中国乳品工业. 2022(05): 41-44+64 .
    8. 蓝蔚青,赵家欣,谢晶. 超声波处理技术在水产品加工中的应用研究进展. 包装工程. 2022(11): 132-139 .
    9. 钟航宇,王满生,郑键欣,成军虎. 非热加工消减水产品致敏性及其评价方法的研究进展. 食品工业科技. 2022(20): 471-480 . 本站查看
    10. 戴浩然,冯雅,何诗行. 食品超高压技术应用及装备研究进展. 食品工业. 2022(09): 179-182 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1333) PDF downloads (184) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return