Citation: | LI Li, SUN Zhihui, MIAO Qinghua, GONG Xue, ZHAO Yifan. New Research Progress of High Pressure Processing Technology in Food Industry[J]. Science and Technology of Food Industry, 2021, 42(6): 337-342. DOI: 10.13386/j.issn1002-0306.2020040357 |
[1] |
Balasubramaniam V M,Martinez-Monteagudo S I. Principles and application of high pressure-based technologies in the food industry[J]. Ammual Review of Food Science and Technology,2015,6:435-462.
|
[2] |
Daniel F F. A short history of research and development efforts leading to the commercialization of high-pressure processing of food[J]. Food Engineering Series,2016:19-36.
|
[3] |
Huang Hsiao-Wen,Hsu Chiao-Ping,Wang Chung-Yi. Healthy expectations of high hydrostatic pressure treatment in food processing industry[J]. Journal of Food and Analysis,2020,28(1):1-13.
|
[4] |
Huang H W,Wu S J,Lu J K,et al. Current status and future trends of high-pressure processing in food industry[J]. Food Control,2017,72:1-8.
|
[5] |
许世闯,徐宝才,奚秀秀,等. 超高压技术及其在食品中的应用进展[J]. 河南工业大学学报(自然科学版),2016,37(5):111-117.
|
[6] |
Huang H W,Lung H M,Yang B B,et al. Responses of microorganisms to high hydrostatic pressure processing[J]. Food Control,2014,40(31):250-259.
|
[7] |
Mircea-Valentin M,Ovidiu M,Victor B. High pressure processing in food industry-characteristics and applications[J]. Agriculture and Agricultural Science Procedia,2016,10:377-383.
|
[8] |
Theofania T,Liliana A,Patricia I S P,George D. High pressure processing of European sea bass(Dicentrarchus labrax)fillets and tools for flesh quality and shelf life monitoring[J]. Journal of Food Engineering,2019,262:83-91.
|
[9] |
袁超,赵峰,周德庆,等. 超高压处理对冷藏鲍鱼保鲜效果与品质变化的影响[J]. 食品工业科技,2017(17):312-321.
|
[10] |
孙思成,刘璐璐,徐新星,等. 适宜超高压处理条件脱除大蒜臭味保持抗氧化和抑菌能力[J]. 农业工程学报,2017,33(19):308-314.
|
[11] |
Simonin H,Duranton F,Lamballerie M. New insights into the high pressure processing of meat and meat products[J]. Comprehensive Reviews in Food Science and Food Safety,2012,11:285-306.
|
[12] |
Isabela R,Marco A T,Franciele R C. Effect of high pressure processing on physicochemical and microbiological properties of marinated beef with reduced sodium content[J]. Innovative Food Science & Emerging Technologies,2016,38:328-333.
|
[13] |
Laurence P,Gina V,Marie L. Applications of high pressure for healthier foods[J]. Current Opinion in Food Science,2017,16:21-27.
|
[14] |
邱伟芬,江汉湖. 食品超高压杀菌技术极其研究进展[J].食品科学,2001,22(5):81-84.
|
[15] |
王蓉蓉,孙传范. 超高压杀菌机制研究进展[J]. 高压物理学报,2012,26(6):700-708.
|
[16] |
Fabiano A O,Cabral N. Effect of high pressure on fish meat quality-A review[J].Trends in Food Science & Technology,2017,66:1-19.
|
[17] |
李汴生. 超高压处理蛋白质和多糖胶体特性的变化及其机理研究[D]. 广州:华南理工大学,1997.
|
[18] |
Shi X J,Zou H N,Sun S,et al. Application of high-pressure homogenization for improving the physicochemical,functional and rheological properties of myofibrillar protein[J]. International Journal of Biological Macromolecules,2019,138:425-432.
|
[19] |
Zhang J,Peng X,Jonas A,Jonas J. NMR study of the cold,heat,and pressure unfolding of ribonuclease A[J]. Biochemistry,1995,34:8631-8641.
|
[20] |
Nash D P,Jonas J. Structure of pressure-assisted cold denatured lysozyme and comparison with lysozyme folding intermediates[J]. Biochemistry,1997,36:14375-14383.
|
[21] |
Smeller L. Pressure-temperature phase diagram of biomolecules[J]. Biochim Biophys Acta,2002,1595:11-29.
|
[22] |
Valeria T,Marie L,Alain L B. Quality changes during the frozen storage of sea bass(Dicentrarchus labrax)muscle after pressure shift freezing and pressure assisted thawing[J]. Innovative Food Science and Emerging Technologies,2010,11:565-573.
|
[23] |
Pérez-Santaescolástica C,Carballo J,Fulladosa E,et al. Influence of high-pressure processing at different temperatures on free amino acid and volatile compound profiles of dry-cured ham[J]. Food Research International,2019,116:49-56.
|
[24] |
Mozhaev V V,Lange R,Kudryashova E V,et al. Application of high hydrostatic pressure for increasing activity and stability of enzymes[J]. Biotechnol. Bioeng,1996,52:320-331.
|
[25] |
Masson P,Bec N,Frement M T,et al. Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine[J]. Eur J Biochem,2004,271:1980-1990.
|
[26] |
Dallet S,Legoy M D. Hydrostatic pressure induces conformational and catalytic changes on two alcohol dehydrogenases but no oligomeric dissociation[J]. Biochim Biophys Acta,1996,1294:15-24.
|
[27] |
Júnior B R C L,Tribst A A L,Bonafe C F S,et al. Determination of the influence of high pressure processing on calf rennet using response surface methodology:Effects on milk coagulation[J]. LWT-Food Science and Technology,2016,65:10-17.
|
[28] |
Heinz V,Buckow R,Knorr D. Catalytic activity of b-amylase from barley in different pressure/temperature domains[J]. Biotechnol Prog,2005,21:1632-1638.
|
[29] |
Buckow R,Heinz V,Knorr D. Two fractional model for evaluating the activity of glucoamylase from Aspergillus niger under combined pressure and temperature conditions[J]. Food Bioprod. Process,2005,83:220-228.
|
[30] |
Buckow R,Heinz V,Knorr D. Effect of high hydrostatic pressure-temperature combinations on the activity of b-glucanase from barley malt[J]. J Inst Brew,2005,111:282-289.
|
[31] |
Thevelein J M,Assche J A V,Heremans K,et al. Gelatinisation temperature of starch,as influenced by high pressure[J]. Carbohydr Res,1981,93:304-307.
|
[32] |
Shigematsu T,Murakami M,Nakajima K,et al. Bioconversion of glutamic acid to γ-aminobutyric acid(GABA)in brown rice grains induced by high pressure treatment[J]. Japan Journal of Food Engineering,2010,11:189-199.
|
[33] |
Li W H,Tian X L,Liu L P,et al. High pressure induced gelatinization of red adzuki bean starch and its effects on starch physicochemical and structural properties[J]. Food Hydrocolloids,2015,45:132-139.
|
[34] |
Thiago S L,Ana L T J,Marcio S,et al. High pressure processing(HPP)of pea starch:Effect on the gelatinization properties[J]. LWT-Food Science and Technology,2017,76:361-369.
|
[35] |
Xie F,Zhang W,Lan X H,et al. Effects of high hydrostatic pressure and high pressure homogenization processing on Carbohydrate Polymerscharacteristics of potato peel waste pectin[J]. Carbohydrate Polymers,2018,196:474-482.
|
[36] |
Papathanasiou M M,Reineke K,Gogou E,et al. Impact of high pressure treatment on the available glucose content of various starch types:A case study on wheat,tapioca,potato,corn,waxy corn and resistant starch(RS3)[J]. Innovative Food Science and Emerging Technologies,2015,30:24-30.
|
[37] |
Maria P,Massimiliano R,Margherita R,et al. Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species[J]. Food Chemistry,2019,274:281-290.
|
[38] |
巩雪,常江. 超高压技术在贝类脱壳加工中的应用[J]. 食品工业科技,2016(15):394-396.
|
[39] |
Campus M. High pressure processing of meat,meat products and seafood[J]. Food Engineering Reviews,2010,2:256-273.
|
[40] |
Tem T D,Aberham H F,Nina G,et al. Effects of high pressure and ohmic heating on shell loosening,thermal and structural properties of shrimp(Pandalus borealis)[J]. Innovative Food Science and Emerging Technologies,2020,59.
|
[41] |
杨绮云,鲍振东,孟爽. 食品超高压设备对贝类脱壳机理的研究[J]. 哈尔滨商业大学学报(自然科学版),2015,31(3):291-294.
|
[42] |
崔燕,林旭东,康孟利,等. 超高压协同冷冻脱壳对南美白对虾品质的影响[J]. 现代食品科技,2018,34(10):171-178.
|
[43] |
Song Y F,Lu Y,Ding H. Structural characteristics at the adductor muscle and shell interface in mussel[J]. Appl Biochem Biotechnol,2013,4:1203-1211.
|
[44] |
廖智,孙琦,姜雨婷. 贝类闭壳肌-贝壳连接界面的分子组成及连接机制[J]. 浙江海洋大学学报(自然科学版),2018,37(4):313-319.
|
[45] |
Elisabete M C A,Alexandre,Sara,et al. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction[J]. Food Research International,2019,115:167-176.
|
[46] |
Zhang S,Zhu J,Wang C. Novel high pressure extraction technology[J]. International Journal of Pharmaceutics,2004,278:471-474.
|
[47] |
Huang H W,Hsu C P,Yang B B,et al. Advances in the extraction of natural ingredients by high pressure extraction technology[J]. Trends in Food Science & Technology,2013,33:54-62.
|
[48] |
Lee A R,Choi S H,Choi H W,et al. Optimization of ultra high pressure extraction(UHPE)condition for puffed ginseng using response surface methodology[J]. Food Science Biotechnology,2014,23:1151-1157.
|
[49] |
Antonela N G,Jelena O,Vicenzia M,et al. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste[J]. Innovative Food Science & Technologies,2020,64.
|
[50] |
Corrales M,Toepfl S,Butz P,et al. Extraction of anthocyanins from grape by-products assisted by ultrasonics,high hydrostatic pressure or pulsed electric fields:A comparison[J]. Innovative Food Science and Emerging Technologies,2008,9:85-91.
|
[51] |
Guo X,Han D,Xi H,et al. Extraction of pectin from navel orange peel assisted by ultra-high pressure,microwave or traditional heating:A comparison[J]. Carbohydrate Polymers,2012,88(2):441-448.
|
[52] |
Shin J S,Ahn S C,Choi S W,et al. Ultra high pressure extraction(UHPE)of ginsenosides from Korean Panax ginseng powder[J]. Food Science and Biotechnology,2012,19:743-748.
|
[53] |
Xi J,Shen D,Zhao S,et al. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction[J]. International Journal of Pharmaceutics,2009,382:139-143.
|
[54] |
Kurabachew S D,Luca F. Extraction of bioactives from food processing residues using techniques performed at high pressures[J]. Current Opinion in Food Science,2015,5:14-22.
|
1. |
王萌. 食品非热加工技术研究进展. 食品安全导刊. 2024(04): 185-187+192 .
![]() | |
2. |
杨洪新. 农产品超高压加工技术研究与发展. 粮油与饲料科技. 2024(03): 182-184 .
![]() | |
3. |
李立. 超高压解冻对牛肉品质变化的影响研究. 食品安全质量检测学报. 2024(22): 294-300 .
![]() | |
4. |
王哲,董丽,胡小松,陈芳. 不同加工技术对西瓜汁风味影响研究进展. 现代食品科技. 2023(11): 310-322 .
![]() | |
5. |
周晨光,周瑶洁,李斌,胡煜骞,刘天睿,杨雯莉,石吉勇,邹小波. 米糠非热稳定化处理技术研究进展. 食品科学. 2023(23): 1-12 .
![]() | |
6. |
崔蓬勃,周剑,丁玉庭,刘建华. 水产品物理保鲜技术的最新研究进展. 浙江工业大学学报. 2022(03): 341-348 .
![]() | |
7. |
杨宝嘉,芦晶,吕加平,逄晓阳,张书文,刘妍妍. 母乳中胆盐激活脂肪酶性质及功能的研究进展. 中国乳品工业. 2022(05): 41-44+64 .
![]() | |
8. |
蓝蔚青,赵家欣,谢晶. 超声波处理技术在水产品加工中的应用研究进展. 包装工程. 2022(11): 132-139 .
![]() | |
9. |
钟航宇,王满生,郑键欣,成军虎. 非热加工消减水产品致敏性及其评价方法的研究进展. 食品工业科技. 2022(20): 471-480 .
![]() | |
10. |
戴浩然,冯雅,何诗行. 食品超高压技术应用及装备研究进展. 食品工业. 2022(09): 179-182 .
![]() |