SI Xiaojing, HAN Jingting, ZHU Wenjing, et al. Establishment of Graphene/Cobaltosic Oxide Electrochemical Sensor and the Detection and Analysis of Vanillin in Cookies[J]. Science and Technology of Food Industry, 2021, 42(8): 221−226. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020040287.
Citation: SI Xiaojing, HAN Jingting, ZHU Wenjing, et al. Establishment of Graphene/Cobaltosic Oxide Electrochemical Sensor and the Detection and Analysis of Vanillin in Cookies[J]. Science and Technology of Food Industry, 2021, 42(8): 221−226. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020040287.

Establishment of Graphene/Cobaltosic Oxide Electrochemical Sensor and the Detection and Analysis of Vanillin in Cookies

More Information
  • Received Date: April 25, 2020
  • Available Online: January 27, 2021
  • The Co3O4/GR/GCE modified electrode, which as a novel electrochemical sensor for determination of vanillin in food, was prepared by dropping graphene (GR) onto a glassy carbon electrode(GCE) and then electro-polymerized by Co(COOH)2 by cyclic voltammetry in this work. The Co3O4/GR composite nanomaterials were characterized by scanning electron microscopy. Moreover, the experimental conditions were optimized. Results showed that, 8.0 μL GR solution (1 mg/mL) of coating amount, 20 electro-polymerization cycles of Co(COOH)2 and pH=5 of 0.1 mol/L phosphate buffer solution were chosen as the best experimental condition. Therefore, vanillin had a good linear relationship in the concentration range of 0.1~80 μmol/L with the electrochemical sensor, and the linear equation was: Ip (μmol/L)=0.1518C+0.5103 (R2=0.997) with detection limit was 0.033 μmol/L (S/N=3). The method was applied to the determination of vanillin in biscuit samples with good recovery and RSD of 1.47%. The results indicated that the electrochemical sensor had high sensitivity and fabulous stability, which proved the feasibility of the electrochemical sensor in practical sample detection and had a wide application prospect.
  • [1]
    Yazana Z, Erden S, Dinc E. A comparative application of two-way and three-way analysis to threedimensional voltammetric dataset for the pKa determination of vanillin[J]. Journal of Electroanalytical Chemistry,2018,826(8):133−141.
    [2]
    彭飞进, 徐幸, 舒平, 等. GC和GC-MS法测定饮料中香兰素和乙基香兰素含量[J]. 食品工业科技,2015,36(15):303−306.
    [3]
    贺江, 盛岳衡. 奶粉中香兰素UPLC检测方法的建立[J]. 食品工业,2018,39(5):327−330.
    [4]
    杨丽霞. 饼干中香兰素含量的测定[J]. 河南化工,2012,29(3−4):52−54.
    [5]
    冯彩婷, 杨丽霞, 李书静. 紫外-可见分光光度法测定奶粉中的香兰素含量[J]. 河北化工,2012,35(6):78−80.
    [6]
    Li L, Zhang Q H, Ding Y P, et al. A simple fluorescence quenching method for the determination of vanillin using TGA-capped CdTe/ZnS nanoparticles as probes[J]. Journal of Fluoresce,2015,25(4):897−905. doi: 10.1007/s10895-015-1570-9
    [7]
    王石, 程劼, 苏晓鸥. 应用表面增强拉曼光谱技术快速检测较大婴幼儿配方奶粉中的香兰素[J]. 中国农业科学,2014,47(11):2224−2232. doi: 10.3864/j.issn.0578-1752.2014.11.016
    [8]
    邢晓平, 崔钢. 毛细管电泳安培检测法快速测定巧克力中的香兰素[J]. 食品工业科技,2006,27(10):186−188. doi: 10.3969/j.issn.1002-0306.2006.10.061
    [9]
    金海涛, 马健瑜, 王晓珣, 等. 高效液相色谱法同时测定香兰素与邻位香兰素[J]. 分析测试学报,2011,30(2):222−224. doi: 10.3969/j.issn.1004-4957.2011.02.021
    [10]
    陈静, 段国霞, 刘丽君, 等. 高效液相色谱法快速测定乳与乳制品中4种香兰素类化合物[J]. 乳业科学与技术,2020,43(1):19−24.
    [11]
    Liu C Y, Zhao L L, Sun Z, et al. Determination of three flavor enhancers using HPLC-ECD and its application in detecting adulteration of honey[J]. Analytical Methods,2018,10(7):743−748. doi: 10.1039/C7AY02248D
    [12]
    徐幸, 彭飞进, 舒平, 等. 顶空固相微萃取-气质联用法测定奶茶中的香兰素和乙基香兰素[J]. 食品工业科技,2016,37(16):79−83, 92.
    [13]
    宁霄, 何欢, 金绍明, 等. 超高效液相色谱-串联质谱法同时测定食品中麦芽酚、乙基麦芽酚、香兰素、甲基香兰素和乙基香兰素[J]. 食品安全质量检测学报,2017,8(7):2555−2562. doi: 10.3969/j.issn.2095-0381.2017.07.028
    [14]
    De Jager L S, Perfetti G A, Diachenko G W. Comparison of headspace-SPME-GC–MS and LC–MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products[J]. Food Chemistry,2008,107(4):1701−1709. doi: 10.1016/j.foodchem.2007.09.070
    [15]
    Jiang L, Ding Y P, Jiang F, et al. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin[J]. Analytica Chimica Acta,2014,833(6):22−28.
    [16]
    迟玉峰, 曲有乐, 石婧. 聚 L-半胱氨酸修饰电极对食品中香兰素的测定[J]. 浙江海洋学院学报(自然科学版),2016,35(2):127−131.
    [17]
    Kalaiyarasi J, Meenakshi S, Pandian K, et al. Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode[J]. Microchimica Acta,2017,184(5):2131−2140.
    [18]
    Ulubay Karab Iberoglu S, Koack C C. Voltammetric determination of vanillin in commercial food products using overoxidized poly(pyrrole) film-modified glassy carbon electrodes[J]. Turk J Chem,2018(42):291−305.
    [19]
    刘晓鹏, 刘国强, 邓培红, 等. 多壁碳纳米管修饰玻碳电极伏安法测定香草醛[J]. 分析测试学报,2019,38(3):312−317.
    [20]
    Albert Gutés, Carlo Carraro, Roya Maboudian. Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform[J]. Biosensors & bioelectronics,2012,33(1):56−59.
    [21]
    Liu B D, Ouyang X Q, Ding Y P, et al. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan[J]. Talanta,2016,146(1):114−121.
    [22]
    Si X J, Wei Y L, Wang C L, et al. Sensitive electrochemical sensor for ofloxacin based on graphene/zinc oxide composite film[J]. Analytical Methods,2018,10(17):1961−1967. doi: 10.1039/C8AY00127H
    [23]
    Beatriz. R, Rubén L F, Cristina J G, et al. Synthesis, characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement[J]. Journal of Catalysis,2011,281(1):88−97. doi: 10.1016/j.jcat.2011.04.005
    [24]
    Ye D X, Luo L Q, Ding Y P, et al. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan[J]. Analyst,2012,137(12):2840−2845. doi: 10.1039/c2an35175g
    [25]
    Jiang L, Gu S Q, Ding Y P, et al. Amperometric sensor based on tricobalt tetroxide nanoparticles-graphene nanocomposite film modified glassy carbon electrode for determination of tyrosine[J]. Colloids and Surfaces B: Biointerfaces,2013,107(6):146−151.
    [26]
    Zhao D S, Lu Y L, Ding Y P, et al. An amperometric L-tryptophan sensor platform based on electrospun tricobalt tetroxide nanoparticles decorated carbon nanofibers[J]. Sensors and Actuators B,2017,241(3):601−606.
  • Cited by

    Periodical cited type(8)

    1. 于雷,王澍,王公辉,王煜红,汪雄军,杨永. 固相萃取-气相色谱法测定油料中5种香精香料. 粮食与油脂. 2024(07): 147-151 .
    2. 张丽. 高效液相色谱法测定婴幼儿羊奶粉中的香兰素. 食品安全导刊. 2024(19): 53-55 .
    3. 南倩,宋薇,杨柏崇,韩建勋,图尔荪托合提·托合提萨伊普,张雅莉. 气相色谱-质谱法测定食品中3-乙酰基-2, 5-二甲基呋喃. 食品科技. 2024(06): 328-334 .
    4. 展望. 气相色谱质谱法在食品中邻苯二甲酸酯塑化剂残留检测中的应用研究. 现代食品. 2024(22): 200-203 .
    5. 周瑞铮,易华娟,林秋凤,张树权,陈锦杭,郑耀林. 食品中香兰素和乙基香兰素检测方法的研究进展. 分析仪器. 2023(01): 9-15 .
    6. 司晓晶,邓卢辰,徐鑫,李丽,宫霞. 香兰素的铜掺杂碳量子点的荧光法检测. 食品工业科技. 2022(07): 280-285 . 本站查看
    7. 薛伟,严大考,尹鹏冲,张聚豪,莫镕豪,李勇. Cu掺杂Co_3O_4基电极材料改性的第一性原理研究. 山东化工. 2022(07): 55-57 .
    8. 林正锋,李实飞,黄杰英,禤开智,王朝政. 液相色谱-串联质谱法测定乳制品中四种常用香料. 食品工业科技. 2021(21): 271-278 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (215) PDF downloads (20) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return