ZHANG Chenghui, FENG Xuqiao. Optimization of Enzyme Reaction System of α-Amylase by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(5): 206-210,220. DOI: 10.13386/j.issn1002-0306.2020040053
Citation: ZHANG Chenghui, FENG Xuqiao. Optimization of Enzyme Reaction System of α-Amylase by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(5): 206-210,220. DOI: 10.13386/j.issn1002-0306.2020040053

Optimization of Enzyme Reaction System of α-Amylase by Response Surface Methodology

More Information
  • Received Date: April 06, 2020
  • Available Online: March 02, 2021
  • Objective:To optimize the reaction system of α-amylase by single-factor optimization and by response surface methodology. Methods:Based on single factor experiment using starch as substrate of α-amylase,and regarding the soluble starch concentration,the α-amylase concentration and the reaction time as three major factors,the Box-behnken design experiment was used to optimize the reaction system conditions of α-amylase and to study the influence of these factors and their interaction on the reaction rate of α-amylase. Results:The optimizing system parameter were as follows:soluble starch 12.0 mg/mL,α-amylase 1.50 U/mL,and reaction time 10.0 min. Under the conditions,the reaction rate of α-amylase was up to(19.53±1.74) mmol/(L·min). This result was near the predicted value of 18.75 mmol/(L·min)in the optimal model. Conclusion:The optimal method of reaction system of α-amylase is reliable and practical significantly for making α-amylase play an excellent activity,which to some extent lays the foundation for the study of glycosidase inhibitors efficiently under the optimal system.
  • [1]
    Kato E,Chikahisa F,Kawabata J. Synthesis and study of the pancreatic α-amylase inhibitory activity of methyl acarviosin and its derivatives[J]. Tetrahedron Letters,2016,57(12):1365-1367.
    [2]
    Tapati B D,Arvind K,Rintu B,et al. Improvement of microbial α-amylase stability:strategic approaches[J]. Process Biochemistry,2016,51(10):4-22.
    [3]
    Naili B,Sahnoun M,Bejar S,et al. Optimization of submerged Aspergillus oryzae S2α-amylase production[J]. Food Science and Biotechnology,2016,25(1):185-192.
    [4]
    Lopaschuk G D,Ussher J R. Evolving concepts of myocardial energy metabolism:more than just fats and carbohydrates[J]. Circulation Research,2016,119(11):1173-1176.
    [5]
    Wang Y,Chao C,Huang H,et al. Revisiting mechanisms underlying digestion of starches[J]. Journal of Agricultural and Food Chemistry,2019,67(29):1-15.
    [6]
    Sun L,Warren F J,Gidley M J. Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic α-amylase[J]. Food Hydrocolloids,2018,79:63-70.
    [7]
    Schauer P R,Nor H Z,Rubino F. Metabolic surgery for treating type 2 diabetes mellitus:Now supported by the world's leading diabetes organizations[J]. Cleveland Clinic Journal of Medicine,2017,84(7):47-56.
    [8]
    Erukainure O L,Hafizur R M,Nurul K,et al. Suppressive effects of Clerodendrum volubile P Beauv.[Labiatae]methanolic extract and its fractions on type 2 diabetes and its complications[J]. Frontiers in Pharmacology,2018,9(8):1-13.
    [9]
    Inzucchi S E,Bergenstal R M,Buse J B,et al. Management of hyperglycaemia in type 2 diabetes:a patient-centred approach. Update to a position statement of the american diabetes association and the european association for the study of diabetes[J]. Diabetologia,2015,58(3):429-442.
    [10]
    Mahendranath G,Prasada Rao U J S. Ethanol extract of mango(Mangifera indica L.)peel inhibits α-amylase and α-glucosidase activities,and ameliorates diabetes related biochemical parameters instreptozotocin(STZ)-induced diabetic rats[J]. Journal of Food Science & Technology,2015,52(12):7883-7893.
    [11]
    Barrera G N,Tadini C C,Alberto E L,et al. Use of alpha-amylase and amyloglucosidase combinations to minimize the bread quality problems caused by high levels of damaged starch[J]. Journal of Food Science and Technology-Mysore-,2016,53(10):1-10.
    [12]
    尹延霞,朱奇峰,刘汉杰,等. 中心组合实验设计响应面法优化α-淀粉酶抑制剂筛选条件[J]. 西南师范大学学报(自然科学版),2015,40(4):83-88.
    [13]
    赵凯,许鹏举,谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学,2008,29(8):534-536.
    [14]
    吕欢,罗明琍,方飞,等. 桑叶提取物对体外α-葡萄糖苷酶活性的影响[J]. 时珍国医国药,2012,23(1):41-42.
    [15]
    Wang M,Jin Z,Liu L,et al. Inhibition of cyclodextrins on the activity of α-amylase[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2018,90(1):1-6.
    [16]
    刘春滟,黎霞. 阿卡波糖抑制Ⅲ型α-葡萄糖苷酶动力学研究[J]. 四川师范大学学报(自然科学版),2015,38(2):286-291.
    [17]
    吕娜,南敏伦,赵昱玮,等. α-葡萄糖苷酶抑制剂的研究进展[J]. 黑龙江医药,2015,28(2):238-242.
    [18]
    刘瑞丽,丁美萍,徐雯,等. α-葡萄糖苷酶抑制剂研究进展[J]. 药物生物技术,2009,16(4):388-392.
    [19]
    曹建康,姜微波,赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社,2007:23-65.
    [20]
    Oboh G,Ademiluyi A O,Akinyemi A J,et al. Inhibitory effect of polyphenol-rich extracts of jute leaf(Corchorus Olitorius)on key enzyme linked to type Ⅱ diabetes(α-amylase and α-glucosidase)and hypertension(angiotensin I converting)in vitro[J]. Journal of Functional Foods,2012,4(2):450-458.
    [21]
    张晋超,赵雄,吕茂民,等. 发色底物法在酶促反应初速度内测定α1抗胰蛋白酶的活性[J]. 军事医学,2015,39(3):189-192.
    [22]
    吴华涛,李玥,王亚丽. 小麦种子中α-淀粉酶酶学性质的研究[J]. 化工时刊,2008,22(12):8-10.
    [23]
    崔明月,曲亚男,蒋丽娜,等. 抑制剂对杏多酚氧化酶抑制作用[J]. 食品工业,2019,40(6):225-229.
    [24]
    Hans Bisswanger. 酶学实验手册[M]. 北京:化学工业出版社,2009:10-70.
    [25]
    王志鹏,邓耿. 酶促反应中的化学平衡改变[J]. 生命的化学,2015,35(5):691-694.
    [26]
    初众,胡美杰,徐飞,等. 响应面法优化酶法提取菠萝蜜种子淀粉工艺[J]. 食品工业科技,2016,37(20):189-193.
    [27]
    邓春梅,吴祖件,何兰珍,等. 碱法预处理琼枝麒麟菜提取卡拉胶的工艺优化[J]. 食品工业科技,2017,38(22):178-183.
  • Related Articles

    [1]ZHU Cheng-hao, TANG Hui, CHAI Sheng-feng, LIU Zhi-xin, WANG Ting, LI Yu-liang. Analysis and Evaluation of Nutritional Components from Leaves and Flowers of Camellia nitidissima in Grafted and Seedling Trees[J]. Science and Technology of Food Industry, 2019, 40(20): 329-333,347. DOI: 10.13386/j.issn1002-0306.2019.20.053
    [2]FANG Ling, MA Hai-xia, LI Lai-hao, YANG Xian-qing, RONG Hui, ZHU Chang-bo. Analysis and evaluation of nutrient composition in Ostrea rivularis from south China sea coast[J]. Science and Technology of Food Industry, 2018, 39(2): 301-307,313. DOI: 10.13386/j.issn1002-0306.2018.02.056
    [3]ZHU Yan-chao, LOU Yong-jiang, XIONG Guo-tong, LIU Jian, LIU Ting, LOU Yue. Composition analysis and evaluation of Goosefish liver nutrition[J]. Science and Technology of Food Industry, 2017, (05): 356-360. DOI: 10.13386/j.issn1002-0306.2017.05.059
    [4]WANG Ting-ting, GAO Guan-shi, WU Su-rui, YANG Zhen-fu, GUI Ming-ying. Analysis of nutritional compositions and evaluation of nutritional quality for Polyporus ellisii[J]. Science and Technology of Food Industry, 2016, (21): 342-346. DOI: 10.13386/j.issn1002-0306.2016.21.058
    [5]MA Yi- dan, LIU Hong, YAN Rui-xin, MA Si-cong, XUE Bing-xiang, WANG Qian. Analysis and evaluation of nutrient content of Synsepalum dulcificum seed[J]. Science and Technology of Food Industry, 2016, (13): 346-351. DOI: 10.13386/j.issn1002-0306.2016.13.063
    [6]CHE Yu-hong, YANG Bo, Aisajan·Mamat, GUO Chun-miao, ZHANG Jun, MA Wen-peng, JIANG Ping. Analysis and evaluation of nutritional composition of big quince in Shache county of Xinjiang[J]. Science and Technology of Food Industry, 2015, (24): 345-348. DOI: 10.13386/j.issn1002-0306.2015.24.067
    [7]JIANG Fang-yan, SONG Wen-ming, YANG Ning, HUANG Hai. Analysis and evaluation of nutrient content of Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2014, (24): 356-359. DOI: 10.13386/j.issn1002-0306.2014.24.067
    [8]CUI Ling-jun, WANG Bao-ping, QIAO Jie, WANG Wei-wei, ZHANG Jian-guo. Analysis and evaluation of nutritive composition of four species of Paulownia flowers[J]. Science and Technology of Food Industry, 2014, (24): 338-341. DOI: 10.13386/j.issn1002-0306.2014.24.063
    [9]YU Gang, ZHANG Hong-jie, YANG Shao-ling, YANG Xian-qing, HAO Shu-xian, ZHANG Peng, LIN Wan-ling. Nutritional component analysis and quality evaluation of Ryukyu squid in South China sea[J]. Science and Technology of Food Industry, 2014, (18): 358-361. DOI: 10.13386/j.issn1002-0306.2014.18.072
    [10]LIU Shu-chen, LI Ren-wei, LIAO Ming-tao, ZHAO Qiao-ling, LIN Sen-sen, DAI Zhi-yuan. Nutritional components analysis and quality evaluation of different muscle parts of bigeye tuna[J]. Science and Technology of Food Industry, 2013, (23): 340-343. DOI: 10.13386/j.issn1002-0306.2013.23.065
  • Cited by

    Periodical cited type(10)

    1. 白佳丽,崔思琪,张瀚文,李雨鑫,古昕雨,雷虹,李文辉. 果蔬清洗机对蔬菜中营养物质的影响. 黑龙江大学工程学报(中英俄文). 2024(01): 104-112 .
    2. 王伟. 臭氧在植物保护实践中的应用与展望. 湖北植保. 2024(02): 18-20 .
    3. 叶云霞,赵英杰. 去除果蔬农药残留方法的研究现状. 农机使用与维修. 2024(08): 119-121 .
    4. 唐雪梅,纪铖臻,卢明瑞,温瑞明,魏静,吴龙. 热带果蔬农药残留处理方法及降解技术研究进展. 食品安全质量检测学报. 2024(19): 1-12 .
    5. 陈思达,张凤英,罗秋水. 果蔬解毒清洗机清洗效果探讨. 生物灾害科学. 2023(02): 249-255 .
    6. 杨书园,蔡颖婷,黄超,余叶贝,王珺菽,伍洋涛,卜令君,周石庆. 掺硼金刚石膜电极除菌除农药性能及机理探讨. 中国给水排水. 2023(13): 103-108 .
    7. 黄友举,初梦圆,路晨,于延冲. 臭氧水降解土壤农药残留研究. 安徽农业科学. 2023(20): 70-72+117 .
    8. 陆胜民,王璐,郑美瑜,汪丽霞,赵四清,朱卫东. 干燥方式和臭氧对胡柚小青果干品有效成分和农残的影响. 保鲜与加工. 2022(08): 71-75+81 .
    9. 孙倩,吴洪生,丁军,王娜,张磊,程诚,石陶然,Faheem Mohamud,倪妮,田伟,吴云成,单正军. 活性氧降解水中乐果效率及机理分析. 环境科学与技术. 2022(S1): 1-6 .
    10. 杨佳洁,李敏敏,肖欧丽,赵浩然,陈捷胤,戴小枫,张民伟,孔志强. 果蔬加工过程农药残留行为研究及加工因子在风险评估中的应用. 食品安全质量检测学报. 2022(22): 7255-7263 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (239) PDF downloads (22) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return