WANG Ying, DU Si-yu, ZHANG Hong, ZHANG Yu-hui, LI Ling, WANG Yan-hong, LI Guo-chen. Determination of Thirteen PFCs in Animal-derived Food by Improved QuEChERS Extraction Coupled with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(1): 239-249. DOI: 10.13386/j.issn1002-0306.2020030192
Citation: WANG Ying, DU Si-yu, ZHANG Hong, ZHANG Yu-hui, LI Ling, WANG Yan-hong, LI Guo-chen. Determination of Thirteen PFCs in Animal-derived Food by Improved QuEChERS Extraction Coupled with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(1): 239-249. DOI: 10.13386/j.issn1002-0306.2020030192

Determination of Thirteen PFCs in Animal-derived Food by Improved QuEChERS Extraction Coupled with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry

More Information
  • Received Date: March 15, 2020
  • Available Online: January 07, 2021
  • A method of ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-ESI-MS/MS)combined with improved QuEChERS was established for the determination of 13 perfluorinated compounds(PFCs)in animal-derived food. The samples were extracted with 0.2% hydrochloric acid acetonitrile and cleaned up with a sorbent mixture of N-propylethylenediamine(PSA),octadecyl bonded silica gel(C18)and graphitized carbon black(GCB). The PFCs were separated by an Atlantis T3 reversed-phase column using gradient elution with a mixed solution of 2.5 mmol/L ammonium acetate methanol and 2.5 mmol/L ammonium acetate,and detected by electrospray ionization in negative mode using the multiple reaction monitoring(MRM)mode. The samples were quantified using isotope internal standard.The calibration curves of 13 PFCs were linear in the concentration range of 0.05~10 ng/mL. The limits of detection(LODs)were between 0.02 and 0.05 μg/kg,and the limits of quantitation(LOQs)were between 0.06 and 0.15 μg/kg. At the spiked levels of 0.2,1 and 2 μg/kg,the average recoveries were in the range of 62.3%~119.3%,with relative standard deviations(RSDs)of 3.5%~19.9%. With its simplicity,accuracy and high sensitivity,this method is suitable for the identification and quantification of 13 PFCs in animal-derived food.
  • [1]
    邰托娅,王金生,王业耀.全氟化合物在沉积物中的分布特征及吸附行为[J].环境科学与技术,2013,36(11):96-102.
    [2]
    郑翌,冷桃花,潘煜辰,等.全氟化合物在食品中的污染情况及检测方法研究进展[J].食品工业科技,2019,40(10):314-319

    ,333.
    [3]
    张美,楼巧婷,邵倩文,等.全氟化合物污染现状及风险评估的研究进展[J].生态毒理学报,2019,14(3):30-53.
    [4]
    宋彦敏,周连宁,郝文龙,等.全氟化合物的污染现状及国内外研究进展[J].环境工程,2017,35(10):82-86.
    [5]
    Ericson J I,Nadal M,Van B B,et al. Per-and polyfluori-nated compounds(PFCs)in house dust and indoor air in Catalonia,Spain:Implications for human exposure[J]. Environment International,2012,39(1):172-180.
    [6]
    谭冬飞,张艳伟,王璐,等.海南省部分区域农田地下水中全氟烷基酸类浓度水平和潜在污染源分析[J].农业环境科学学报,2018,37(2):350-357.
    [7]
    Lescord G L,Kidd K A,De Silva A O,et al. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian High Arctic[J]. Environmental Science & Technology,2015,49(5):2694-2702.
    [8]
    Gebbink W A,Bossi R,Riget F F,et al. Observation of emerging per-and polyfluoalkyl substances(PFASs)in Greenland marine mammals[J]. Chemosphere,2016,144:2384-2391.
    [9]
    Jack T,Matthew L,Leisa-Maree T,et al. Use of simple pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and perfluorooctane sulfonic acid[J]. Environment International,2010,36(4):390-397.
    [10]
    Line S H,Cathrine T,Anne L B,et al. Diet and particularly seafood are major sources of perfluorinated compounds in humans[J]. Environment International,2010,36(4):772-778.
    [11]
    Lee Y A,Kim J H,Jung H W,et al. The serum con-centrations of perfluoroalkyl compounds were inversely associated with growth parameters in 2-year old children[J]. Science of the Total Environment,2018,s628-629:226-232.
    [12]
    杨莉莉,金芬,李敏洁,等.食品和食品包装材料中全氟化合物(PFCs)的研究进展[J].食品工业科技,2014,35(8):367-372.
    [13]
    刘晓晖,胡宏,李双月,等.全氟辛烷磺酸神经发育毒性机制研究进展[J].生态毒理学报,2013,8(5):643-649.
    [14]
    Joensen U N,Bossi R,Leffers H,et al. Do perfluoroalkyl compounds impair human semen quality?[J]. Enviromental Health Perspectives,2009,117(6):923-927.
    [15]
    Yang Q,Abedi-Valugerdi M,Xie Y,et al. Potent suppression of the adaptive immune response in mice upon dietary exposure to the potent peroxisome proliferator,perfluorooctanoic acid[J]. International Immunop-harmacology,2002,2(2-3):389-398.
    [16]
    Ericson I,Mart R,Nadal M,et al. Human exposure to perfluorinated chemicals through the diet:Intake of perfluorinated compounds in foods fromthe Catalan(Spain)market[J]. Journal of Agriculture Food Chemistry,2008,56(5):1787-1794.
    [17]
    Jian J M,Guo Y,Zeng L,et al. Global distribution of perfluorochemicals(PFCs)in potential human exposure sourece-A review[J]. Environment International,2017,108:51-62.
    [18]
    Jones P D,Hu W,Coen W D,et al. Binding of perfluorinated fatty acids to serum proteins[J]. Environmental Toxicology and Chemistry,2003,22(11):2639-2649.
    [19]
    Tittlemier S A,Pepper K,Seymour C,et al. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption ofmeat,fish,fast foods,and food items prepared in their packaging[J].Journal of Agriculture Food Chemistry,2007,55(8):3203-3210.
    [20]
    Law R J,Bersuder P,Mead L K. PFOS and PFOA in the livers of harbour porpoises(Phocoena phocoena)stranded or by caught around the UK[J]. Marine Pollution Bulletin,2008,56(4):792-797.
    [21]
    魏琳琳.柱前衍生-气相色谱法快速测定食品接触材料中全氟辛酸[J].包装与食品机械,2019,37(4):69-72.
    [22]
    王晓研,沈伟健,王红,等.气相色谱-负化学源-质谱法检测水中10种全氟羧酸化合物[J].色谱,2019,37(1):32-39.
    [23]
    张子豪,肖前,钟怀宁,等.液-液萃取/气相色谱-串联质谱测定纸制食品接触材料中9种挥发性全氟化合物前体物的迁移量[J].分析测试学报,2018,37(9):1002-1007.
    [24]
    中华人民共和国国家卫生和计划生育委员会. GB 5009.253-2016食品安全国家标准动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定[S]. 北京:中国标准出版社,2016.
    [25]
    中华人民共和国国家质量监督检验检疫总局. SN/T 3544-2013出口食品中全氟辛酸和全氟辛酸磺酸盐的测定液相色谱-质谱质谱法[S]. 北京:中国标准出版社,2013.
    [26]
    中华人民共和国国家卫生和计划生育委员会. GB 31604.35-2016食品安全国家标准食品接触材料及制品全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定[S]. 北京:中国标准出版社,2016.
    [27]
    郭萌萌,吴海燕,李兆新,等.超快速液相色谱-串联质谱法检测水产品中23种全氟烷基化化合物[J].分析化学,2013,41(9):1322-1327.
    [28]
    朱萍萍,岳振峰,郑宗坤,等.分散固相萃取结合高效液相色谱-串联质谱法测定羊肝中19种全氟烷基酸[J].色谱,2015,33(5):494-500.
    [29]
    刘莉治,郭新东,方军,等.UPLC-MS/MS法检测肉类组织中的11种全氟化合物[J].分析测试学报,2013,32(7):862-866.
    [30]
    何建丽,彭涛,谢洁,等.高效液相色谱-串联质谱法测定动物肝脏中20种全氟烷基类化合物[J].分析化学,2015,45(1):40-48.
    [31]
    王杰明,王丽,冯玉静,等.液相色谱-质谱联用分析动物内脏和肌肉组织中的全氟化合物[J].食品科学,2010,31(4):127-131.
    [32]
    白文荟,刘金钏,颜朦朦,等.猪肉、猪肝中17种全氟烷基化合物的HPLC-MS/MS测定[J].食品安全质量检测学报,2015,6(1):189-196.
    [33]
    GB-BSI. BS ISO 25101-2009 Water quality-determination of perfluorooctanesulfonate(PFOS)and perfluorooctanoate(PFOA)-method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry[S]. Switzerland:The Authority of the Standards Policy and Strategy Committee,2009.
    [34]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 27417-2017合格评定化学分析方法确认和验证指南[S]. 北京:中国标准出版社,2017.
    [35]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 27404-2008实验室质量控制规范食品理化检测[S]. 北京:中国标准出版社,2008.
    [36]
    蓝芳,冯沙,沈金灿,等.高效液相色谱-串联质谱法测定葡萄酒中14种全氟化合物[J].分析化学,2013,41(12):1893-1898.
    [37]
    达晶,王钢力,曹进,等.QuEChERS-液相色谱-串联质谱法测定植物性食品中30种氨基甲酸酯类农药残留[J].色谱,2015,33(8):830-837.
    [38]
    冷桃花,王亮,郑翌.高效液相色谱-串联质谱法测定婴幼儿米粉中12种全氟烷基化合物[J].食品安全质量检测学报,2019,10(23):8087-8092.
    [39]
    李璐,李丹凤.QuEChERS-超高效液相色谱-串联质谱法测定蜂蜜中41种糖皮质激素[J] 食品安全质量检测学报2019,10(2):500-509.
  • Related Articles

    [1]FENG Lifeng, HUANG Qian, YE Mengwei, HUANG Yonghui, HUANG Yan, LIN Haoxue, LIANG Min, XU Hui. Determination of 30 Kinds of Antiparasitic Drugs in Animal-derived Foods by QuEChERS-UPLC-MS/MS[J]. Science and Technology of Food Industry, 2024, 45(6): 280-288. DOI: 10.13386/j.issn1002-0306.2023050175
    [2]WU Yanlei, SU Min, ZHOU Chunjie, TIAN Yuan, WANG Min. Simultaneous Determination of 76 Veterinary Drugs and Their Metabolites in Pork by QuEChERS-Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(20): 311-321. DOI: 10.13386/j.issn1002-0306.2022110330
    [3]YU Ling, SONG Lihua. Rapid Determination of Five Alkaloids in Catering Crayfish by QuEChERS-UPLC-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(2): 324-331. DOI: 10.13386/j.issn1002-0306.2022030219
    [4]XU Xing, ZHANG Yan, SHU Ping, YANG Weihua. Determination of 20 Kinds of Cephalosporins Residues in Animal Derived Food by QuEChERS-LC-MS/MS with Isotope Internal Standards Method[J]. Science and Technology of Food Industry, 2022, 43(24): 320-330. DOI: 10.13386/j.issn1002-0306.2022030194
    [5]WANG Jing, ZHANG Haichao, JIA Haitao, AI Lianfeng. Determination of 14 Anabolic Androgenic Steroids in Animal Derived Foods by QuEChERS-High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2022, 43(20): 291-299. DOI: 10.13386/j.issn1002-0306.2021120163
    [6]TAN Gaohao, WANG Chengye, ZHENG Jinming, YIN Qingchun, XU Bin, WU Jiren. Simultaneous Determination of 37 Veterinary Drugs in Animal-Derived Foods by Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry(UPLC-MS/MS)[J]. Science and Technology of Food Industry, 2021, 42(17): 225-234. DOI: 10.13386/j.issn1002-0306.202009030
    [7]ZHOU Jia, SU A-long, ZHU Shu-qiang, WANG Li-jun, YU Jie. Determination of Insecticide of Phenylpyrazole Derivatives in Poultry Derived Foods by QuEChERS Method Combined with Liquid Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2019, 40(16): 206-211,217. DOI: 10.13386/j.issn1002-0306.2019.16.035
    [8]YANG Lu-ping, SHAO Li-jun, WANG Guo-ling, WANG Xi-ning, REN Xiao-fei, LIU Yong-jun. Determination of Thirteen Pesticides in Edible Mushrooms by QuEChERS with UPLC MS/MS[J]. Science and Technology of Food Industry, 2019, 40(14): 247-253. DOI: 10.13386/j.issn1002-0306.2019.14.040
    [9]GAO Hai-rong. Determination of Nitromidazoles in Fish by QuEChERS Extraction with ZrO2Coupled to High Performance Liquid Chromatography-tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2019, 40(4): 266-270. DOI: 10.13386/j.issn1002-0306.2019.04.044
    [10]WANG Ke-yu, YANG Hong-xu, WANG Chao-ying, RUAN Hua-ping, CHEN Dong-po, ZHOU Peng. Application of Baking,Boiling,Microwaving Heating Techniques in Animal-derived Food Processing[J]. Science and Technology of Food Industry, 2018, 39(13): 325-330. DOI: 10.13386/j.issn1002-0306.2018.13.060
  • Cited by

    Periodical cited type(18)

    1. 温雅君,王全红,杨红菊,孙志伟,刘希艳,高利文,肖志勇. 胶体金免疫层析法快速检测韭菜中腐霉利的质量分析与评价. 农药科学与管理. 2025(01): 29-33 .
    2. 杨静,方芳,沈媛,孙娟,吴仑,陈翔,贾晨,李英. 水产品中地西泮快速检测产品技术评价. 食品安全质量检测学报. 2025(07): 102-108 .
    3. 姚南南,刘芳,高会群,张学龙,杜斌,张郢,杨梅,蒲小容. 基于荧光微球的多菌灵残留快速检测试纸条的研制. 食品科技. 2024(01): 344-350 .
    4. 陈喆,高文分,刘屹. 快速显色法筛查祛斑美白类化妆品中糖皮质激素. 化学分析计量. 2024(07): 7-11+22 .
    5. 薛芳,张照红,殷慧龄. 胶体金免疫层析法在农残快速检测中的研究与探讨. 新疆农业科技. 2024(06): 39-41 .
    6. 骆丽清,伍浚铧,胡茗淇,黎喜萍. 氟虫腈和水胺硫磷胶体金试剂盒性能考察与分析. 食品安全导刊. 2024(35): 72-75 .
    7. 杨睿,蔡琳,卢灿鑫,李乐诗,张洁吟,刘晓晗,王韦达. 致病菌测试片质量评价方法研究. 食品安全质量检测学报. 2024(23): 41-51 .
    8. 陈振东. 食品安全快速检测技术在食品安全监督中的运用浅析. 食品安全导刊. 2023(03): 121-123 .
    9. 王元清,周巧,李莎,韩静,王惠,李建龙,何利,陈姝娟,刘爱平,李琴,胡凯弟,刘书亮. 市售原粮农药残留快速检测产品的质量评价与分析. 中国粮油学报. 2023(04): 122-128 .
    10. 刘海虹,刘耀慧,雷毅. 基于真实食品的兽药残留快检结果准确性验证及应用探索. 食品安全导刊. 2023(33): 63-67 .
    11. 罗俊霞,张刚,申战宾,杨华,叶茂,段鹿梅,李艳珍,赵建波,桑丽雅,马蕾,张威. 胶体金免疫层析技术应用于农药残留检测的研究进展. 农产品质量与安全. 2022(01): 41-49 .
    12. 倪诗瑶,刘欠欠. 草莓农药残留快速检测方法对比分析. 上海农业科技. 2022(01): 30-32 .
    13. 顾晔,张爽,王成军,李悦,杨雨柔. 基于免疫原理的7种磺胺类兽药残留快速检测试剂结果准确性评估. 食品安全质量检测学报. 2022(03): 992-1000 .
    14. 陈振东. 食品安全检测技术在保障食品质量安全中的作用. 食品安全导刊. 2022(35): 166-168 .
    15. 叶秋雄,毛新武,梁俊发,张彬彬,林嘉健,彭程,易云婷. 农贸市场食用农产品快速检测工作监督评价与效果分析. 食品安全质量检测学报. 2021(19): 7826-7830 .
    16. 泮秋立,胡明燕,沈祥震,孙嵛林,李峥,王骏. 食用农产品批发市场自建快检室运行中存在的问题及建议. 食品安全导刊. 2021(29): 7-10 .
    17. 占绣萍,刘彬,黄兰淇,陈秀,马琳,陈建波,赵莉. 应用胶体金法检测叶类蔬菜中吡虫啉、多菌灵、啶虫脒、噻虫嗪的残留量分析. 农药科学与管理. 2021(10): 24-31 .
    18. 岳绪辉,杜斌,林栋,令狐克勇,杨梅,付秋平,李丙凤,杨曦. 草甘膦胶体金免疫层析试纸条的研制. 食品科技. 2021(12): 301-307 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (260) PDF downloads (32) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return