MO Xinying, GUAN Guilin, WU Hao, et al. Preparation and Properties of Zinc Oxide Nanoparticles-Alginate/Chitosan Bilayer Composite Film [J]. Science and Technology of Food Industry, 2021, 42(9): 214−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020010144.
Citation: MO Xinying, GUAN Guilin, WU Hao, et al. Preparation and Properties of Zinc Oxide Nanoparticles-Alginate/Chitosan Bilayer Composite Film [J]. Science and Technology of Food Industry, 2021, 42(9): 214−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020010144.

Preparation and Properties of Zinc Oxide Nanoparticles-Alginate/Chitosan Bilayer Composite Film

More Information
  • Received Date: January 15, 2020
  • Available Online: March 15, 2021
  • In this study, an alginate/chitosan bilayer composite film loaded with zinc oxide nanoparticles was fabricated by layer-by-layer casting method. Then, the effects of zinc oxide nanoparticles on the properties of bilayer composite film were studied by measuring mechanical, barrier, and optical characteristics. Moreover, the structural properties of film were characterized by atomic force microscope, scanning electron microscope, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The results showed that after incorporation of zinc oxide nanoparticles into the alginate/chitosan bilayer film, its tensile strength increased. Moreover, the elongation at break, water solubility, water vapor permeability, and transmittance decreased, whereas the color of appearance did not change significantly. Referring to the microstructure of bilayer film, with the concentration of nano zinc oxide ranging from 0.25% (w/w) to 1.00% (w/w), agglomeration of particles appeared on the surface of the alginate/chitosan bilayer composite film, and the roughness Ra increased from 3.12 nm to 3.53 nm. Infrared and thermogravimetric analysis indicated that there was a strong hydrogen-bonding interaction of nano zinc oxide with chitosan and alginate, improving the thermal stability of film. Therefore, the alginate/chitosan bilayer composite film loaded with nano zinc oxide has better packaging properties and applicability.
  • [1]
    Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances,2017,3(7):e1700782. doi: 10.1126/sciadv.1700782
    [2]
    匡衡峰, 胡长鹰, 温晓敏, 等. 纳米ZnO/壳聚糖复合膜的性能及在冷鲜猪肉保藏中的应用[J]. 食品与发酵工业,2017,43(4):256−261.
    [3]
    董峰, 黄帅超, 魏占锋, 等. 海藻酸钠-纳米纤维素共混膜的制备及性能[J]. 材料科学与工程学报,2019,37(3):401−404.
    [4]
    Basu S, Plucinski A, Catchmark J M. Sustainable barrier materials based on polysaccharide polyelectrolyte complexes[J]. Green Chemistry,2017,19(17):4080−4092. doi: 10.1039/C7GC00991G
    [5]
    Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. Science,2015,348(6233).
    [6]
    Zhuang C, Jiang Y, Zhong Y, et al. Development and characterization of nano-bilayer films composed of polyvinyl alcohol, chitosan and alginate[J]. Food Control,2018,86:191−199. doi: 10.1016/j.foodcont.2017.11.024
    [7]
    Valencia-Sullca C, Vargas M, Atarés L, et al. Thermoplastic cassava starch-chitosan bilayer films containing essential oils[J]. Food Hydrocolloids,2018,75:107−115. doi: 10.1016/j.foodhyd.2017.09.008
    [8]
    Richardson J J, Cui J, Björnmalm M, et al. Innovation in layer-by-layer assembly[J]. Chemical Reviews,2016,116(23):14828−14867. doi: 10.1021/acs.chemrev.6b00627
    [9]
    郭梦雅, 李晓意, 易凯, 等. 纳米氧化锌的制备及抗菌性能研究[J]. 包装工程,2019,40(19):172−179.
    [10]
    Farhoodi M. Nanocomposite materials for food packaging applications: Characterization and safety evaluation[J]. Food Engineering Reviews,2016,8(1):35−51. doi: 10.1007/s12393-015-9114-2
    [11]
    Divsalar E, Tajik H, Moradi M, et al. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese[J]. International Journal of Biological Macromolecules,2018,109:1311−1318. doi: 10.1016/j.ijbiomac.2017.11.145
    [12]
    Li K, Zhu J, Guan G, et al. Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism[J]. International Journal of Biological Macromolecules,2019,122:485−492. doi: 10.1016/j.ijbiomac.2018.10.188
    [13]
    Zhu J, Wu H, Sun Q. Preparation of crosslinked active bilayer film based on chitosan and alginate for regulating ascorbate-glutathione cycle of postharvest cherry tomato (Lycopersicon esculentum)[J]. International Journal of Biological Macromolecules,2019,130:584−594. doi: 10.1016/j.ijbiomac.2019.03.006
    [14]
    谭瑞心, 张万刚, 周光宏. 牛至精油-羧甲基纤维素活性包装膜制备及其抗氧化和抗菌性能研究[J]. 食品工业科技,2019,40(12):90−96.
    [15]
    沈凯青, 李倩如, 曾绍校, 等. 阿魏酸-米渣蛋白复合膜的结构及性能[J]. 食品工业科技,2019,40(18):201−206.
    [16]
    郭丽, 王鹏, 刘东琦, 等. 透明质酸-明胶复合膜的制备及理化性质研究[J]. 食品工业科技,2019,40(22):217−222.
    [17]
    涂晓丽, 何平, 潘思轶, 等. 柚皮纳米微晶纤维素的制备及其用于改进羧甲基淀粉膜性能的研究[J]. 现代食品科技,2019,35(10):148−154, 188.
    [18]
    Roy S, Rhim J W, Jaiswal L. Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles[J]. Food Hydrocolloids,2019,93:156−166. doi: 10.1016/j.foodhyd.2019.02.034
    [19]
    Tankhiwale R, Bajpai S K. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging[J]. Colloids and Surfaces B: Biointerfaces,2012,90:16−20. doi: 10.1016/j.colsurfb.2011.09.031
    [20]
    汪陈洁, 张东亮, 马成业, 等. 纳米氧化锌复合膜的“一锅法”制备与性质研究[J]. 食品科技,2019,44(6):87−91.
    [21]
    Rahman P M, Mujeeb V M A, Muraleedharan K. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat[J]. International Journal of Biological Macromolecules,2017,97:382−391. doi: 10.1016/j.ijbiomac.2017.01.052
    [22]
    Duncan T V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors[J]. Journal of Colloid and Interface Science,2011,363(1):1−24. doi: 10.1016/j.jcis.2011.07.017
    [23]
    赵媛, 严文静, 赵见营, 等. 柠檬醛/纳米SiO2交联改性PVA复合材料阻水性能和结构研究[J]. 食品工业科技,2019,40(17):148−153, 160.
    [24]
    米佳, 禄璐, 戴国礼, 等. 枸杞色泽与其类胡萝卜素含量和组成的相关性[J]. 食品科学,2018,39(5):81−86. doi: 10.7506/spkx1002-6630-201805013
    [25]
    艾茜, 胡长鹰, 林勤保, 等. 纳米银/低密度聚乙烯复合食品包装薄膜的表征及性能[J]. 食品工业科技,2014,35(22):294−298.
    [26]
    Chen Y, Yan X, Zhao J, et al. Preparation of the chitosan/poly (glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property[J]. Carbohydrate Polymers,2018,191:8−16. doi: 10.1016/j.carbpol.2018.02.065
    [27]
    Yu Z, Alsammarraie F K, Nayigiziki F X, et al. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films[J]. Food Research International,2017,99:166−172. doi: 10.1016/j.foodres.2017.05.009
    [28]
    郑科旺, 付梅芳, 黄超凡, 等. 壳聚糖/淀粉/ZnO复合膜的制备与性能[J]. 包装工程,2017,38(13):90−95.
    [29]
    Hosseini S F, Nahvi Z, Zandi M. Antioxidant peptide-loaded electrospun chitosan/poly (vinyl alcohol) nanofibrous mat intended for food biopackaging purposes[J]. Food Hydrocolloids,2019,89:637−648. doi: 10.1016/j.foodhyd.2018.11.033
    [30]
    Elashmawi I S, Hakeem N A, Marei L K, et al. Structure and performance of ZnO/PVC nanocomposites[J]. Physica B: Condensed Matter,2010,405(19):4163−4169. doi: 10.1016/j.physb.2010.07.006
    [31]
    Lin X, Wu Q, Luo X, et al. Effect of degree of acetylation on thermoplastic and melt rheological properties of acetylated konjac glucomannan[J]. Carbohydrate Polymers,2010,82(1):167−172. doi: 10.1016/j.carbpol.2010.04.053
    [32]
    Rodríguez F J, Galotto M J, Guarda A, et al. Modification of cellulose acetate films using nanofillers based on organoclays[J]. Journal of Food Engineering,2012,110(2):262−268. doi: 10.1016/j.jfoodeng.2011.05.004

Catalog

    Article Metrics

    Article views (422) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return