WANG Chengfeng, LI Bailiang, YUE Yingxue, CHEN Ziyu, YAN Fenfen, HUO Guicheng, LI Aili. Screening of a Weakly Post-acidified Lactobacillus bulgaricus KLDS1.1011 and Its Genome-wide Annotation[J]. Science and Technology of Food Industry, 2021, 42(6): 103-110. DOI: 10.13386/j.issn1002-0306.2019090296
Citation: WANG Chengfeng, LI Bailiang, YUE Yingxue, CHEN Ziyu, YAN Fenfen, HUO Guicheng, LI Aili. Screening of a Weakly Post-acidified Lactobacillus bulgaricus KLDS1.1011 and Its Genome-wide Annotation[J]. Science and Technology of Food Industry, 2021, 42(6): 103-110. DOI: 10.13386/j.issn1002-0306.2019090296

Screening of a Weakly Post-acidified Lactobacillus bulgaricus KLDS1.1011 and Its Genome-wide Annotation

More Information
  • Received Date: September 26, 2019
  • Available Online: March 15, 2021
  • In order to study the key genes that affect the post-acidification of Lactobacillus bulgaricus, it provides a theoretical basis for the development of yogurt starter at the molecular level. In this experiment, 8 existing Lactobacillus bulgaricus in the laboratory were used as starting strains. Based on their growth performance and acid sensitivity, 4 strains of Lactobacillus bulgaricus(KLDS1.0207, KLDS1.0205, KLDS1.1001, and KLDS1.1011) with obvious differences in acid production were selected. Four strains of Lactobacillus bulgaricus were tested for the curd time, titrated acidity, and lactose consumption of four strains of Lactobacillus bulgaricus single strains. The analysis showed that the strain KLDS1.1011 had the weakest acidification capacity.Genome sequencing of strain KLDS1.1011 via Illumina HiSeq and Illumina MiSeq sequencing platform. The total length of the KLDS1.1011 genome was 1884491 bp.The average G+C content was 39.83%. A total of 2098 CDS were predicted in the genome, with a total length of 1622760 bp.The total length of the coding region accounted for 85.97% of the whole genome and the average length of the coding gene was 773 bp. The genomes of Lactobacillus bulgaricus KLDS1.1011 and KLDS1.0207 were used homology cluster analysis to compare. It was found that there were 1631 genes in common, KLDS1.1011 had 353 unique genes, and KLDS1.0207 had 320 unique genes. Furthermore, by annotating the KEGG pathway and analyzing the post-acidification related pathways of the unique genes, 6 genes related to post-acidification were obtained. The four genes 1011_GM000805, 1.1011_GM002068, 1.1011_GM000803, and 1.1011_GM000804 were related to the formation of biofilms and the material transport of strains. 1.1011_GM000260 gene belonged to the pyruvate metabolism pathway and was an important pathway in the lactic acid production process and the 1.1011_GM000194 gene was a key enzyme gene for proteolysis. It would provide an important theoretical basis for the weak post-acidification characteristics of strain KLDS1.1011 at the gene level.
  • [1]
    郭清泉,张兰威,夏秀芳. 酸奶制品发生后酸化主要发酵剂菌确定及性质研究[J]. 食品与发酵工业,2002,28(4):24-27.
    [2]
    徐成勇,吴昊,郑思聪,等.酸乳后酸化影响因子的初步研究[J]. 食品与发酵工业,2006,32(12):10-14.
    [3]
    C.Beal,J.Skokanova,et al. Combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt[J]. Journal of Dairy Science,1999,82(4):673-681.
    [4]
    Ongol M P,Sawatari Y,Ebina Y,et al. Yoghurt fermented by Lactobacillus delbrueckii subsp. bulgaricus H+-ATPase-defective mutants exhibits enhanced viability of Bifidobacterium breve during storage[J]. International Journal of Food Microbiology,2007,116(3):358-366.
    [5]
    Chen M J,Tang H Y,Chiang M L. Effects of heat,cold,acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic,Lactobacillus kefiranofaciens M1[J]. Food Microbiology,2017,66:20-27.
    [6]
    Rivals J P,Catherine Béal,Thammavongs B,et al. Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is modified by acquisition of antibiotic resistance[J]. Cryobiology,2007,55(1):19-26.
    [7]
    Li C,Song J,Kwok L Y,et al. Influence of,Lactobacillus plantarum,on yogurt fermentation properties and subsequent changes during postfermentation storage[J]. Journal of Dairy Science,2017,100(4):2512-2525.
    [8]
    Settachaimongkon S,Van Valenberg H J F,Gazi I,et al. Influence of Lactobacillus plantarum WCFS1 on post-acidification,metabolite formation and survival of starter bacteria in set-yoghurt[J]. Food Microbiology,2016,59:14-22.
    [9]
    Wang T,Xu Z,Lu S,et al. Effects of glutathione on acid stress resistance and symbiosis between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus[J]. International Dairy Journal,2016,61:22-28.
    [10]
    Elisabetta Benozzi,Romano A,Capozzi V,et al. Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds[J]. Food Research International,2015,76:682-688.
    [11]
    Indyk H E,Edwards M J,Woollard D C. High performance liquid chromatographic analysis of lactose-hydrolysedmilk[J]. Food Chemistry,1996,57(4):575-580.
    [12]
    丁秀云,蒙月月,李柏良,等. 嗜热链球菌KLDSSM胞外多糖生物合成途径的分析[J].食品工业科技,2017(12):157-162.
    [13]
    张文羿,孟和,张和平. 乳酸菌基因组学研究进展[J].微生物学报,2008,48(9):1270-1275.
    [14]
    Van d G M,Penaud S,Grimaldi C,et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(24):9274-9279.
    [15]
    Tanigawa K,Watanabe K. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii[J]. Microbiology,2011,157(3):727-738.
    [16]
    Song Y,Sun Z,Guo C,et al. isolated from naturally fermented dairy foods[J]. Scientific Reports,2016,6:22704.
    [17]
    程娜. 基于组学技术解析保加利亚乳杆菌LJJ的耐酸机制[D].临汾:山西师范大学,2018.
    [18]
    孙懿琳,田辉,方伟,等.保加利亚乳杆菌关键糖代谢机制的研究[J]. 食品工业科技,2012,33(22):202-205.
    [19]
    李柏良,丁秀云,靳妲,等. 基于基因组学分析嗜热链球菌KLDS SM的蛋白质水解系统和氨基酸合成途径[J].食品科学,2018(1):120-126.
    [20]
    Feng Q,Huang T,Zhao Q,et al. Analysis of collinear regions of Oryza AA and CC genomes[J]. Journal of Genetics and Genomics,2009,36(11):667-677.
    [21]
    Li B,Ding X,Evivie S E,et al. Short communication:Genomic and phenotypic analyses of exopolysaccharides produced by,Streptococcus thermophilus,KLDS SM[J]. Journal of Dairy Science,2017,101(1):106-112.
    [22]
    Hui T,Bailiang L,Smith E,et al. Technological and genomic analysis of roles of the cell-envelope protease PrtS in yoghurt starter development[J]. International Journal of Molecular Sciences,2018,19(4):1068.
    [23]
    Salmon-Divon M,Dvinge H,Tammoja K,et al. PeakAnalyzer:Genome-wide annotation of chromatin binding and modification loci[J]. BMC Bioinformatics,2010,11(1):415.
    [24]
    Schmid R,Blaxter M L. Annot8r:GO,EC and KEGG annotation of EST datasets[J]. Bmc Bioinformatics,2008,9(1):180.
    [25]
    Galperin M Y,Makarova K S,Wolf Y I,et al. Expanded microbial genome coverage and improved protein family annotation in the COG database[J]. Nucleic Acids Research,2015,43(D1):D261-D269.
    [26]
    Hickey M W,Hillier A J,Jago G R. Transport and metabolism of lactose,glucose,and galactose in homofermentative lactobacilli[J]. Applied & Environmental Microbiology,1986,51(4):825-831.
    [27]
    Aat Ledeboer,Jeroen Hugenholtz,Jan Kok,et al. Thirty years of research on lactic acid bacteria[M]. Holland:Max Blngham,2011:493-535.
    [28]
    韩巍巍,侯俊财,曹秋阁,等. 不同生长阶段保加利亚乳杆菌关键蛋白酶基因表达变化规律[J]. 食品与发酵工业,2014,40(3):13-19.
    [29]
    Leong-Morgenthaler,P,Zwahlen,M C,Hottinger,H. Lactose metabolism in Lactobacillus bulgaricus:Analysis of the primary structure and expression of the genes involved[J]. Journal of Bacteriology,1991,173(6):1951-1957.
    [30]
    Fernandez A,Ogawa J,Stéphanie Penaud,et al. Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus[J]. Proteomics,2008,8(15):3154-3163.
  • Related Articles

    [1]ZHANG Haojing, XU Zhengang, LI Yongxian, CHEN Tiange, HE Tianyi, XU Min, TUO Xiaojun, LIU Lei, ZHAO Xihong. Effect of Degree of Milling on the Cooking Properties and Edible Quality of the Sea Rice[J]. Science and Technology of Food Industry, 2024, 45(23): 104-110. DOI: 10.13386/j.issn1002-0306.2023120044
    [2]LU Huiqin, HUANG Yuyu, REN Xiaopu, NIU Xiyue, LAN Daoliang, WANG Yuqi, WANG Linlin. Effects of Curing Time on the Edible Quality and Oxidation Characteristics of Complex Low-sodium Yak Meat[J]. Science and Technology of Food Industry, 2024, 45(15): 76-84. DOI: 10.13386/j.issn1002-0306.2023080191
    [3]ZHANG Bei, LU Tian, LEI Qing, ZHANG Xue, DAO Xiaofang, WANG Linlin, KALBINUR Kadir, CHEN Yu. Comparison of the Effects of Different Edible Fungi on Edible Quality of Yak Meat Balls During Storage[J]. Science and Technology of Food Industry, 2023, 44(16): 367-376. DOI: 10.13386/j.issn1002-0306.2022090203
    [4]HE Qi, DONG Yi, DENG Sha, XIANG Yan, HE Peijun, HE Qiang. Effects of NaCl on Edible Quality of Salted Rabbit Meat[J]. Science and Technology of Food Industry, 2022, 43(15): 115-122. DOI: 10.13386/j.issn1002-0306.2021110065
    [5]ZHANG Ling-wen, WANG Xue-fei, JV Xing, JI Hong-fang, WANG Fang, WANG Hua, MA Han-jun. Effect of Glutenin-Gliadin Ratio on the Edible Quality of Crusts from Deep-Fried Battered Pork Slices[J]. Science and Technology of Food Industry, 2020, 41(9): 14-19. DOI: 10.13386/j.issn1002-0306.2020.09.003
    [6]SHEN Ming-cong, ZHOU Ming-yang, SUN Yang-ying, TANG Xiao, PAN Dao-dong, CAO Jin-xuan. Effects of Different Heating Methods on Edible Quality of Salted Goose[J]. Science and Technology of Food Industry, 2019, 40(11): 63-69,78. DOI: 10.13386/j.issn1002-0306.2019.11.012
    [7]WANG Xiao-ping, LEI Ji, TANG Shi, LU Yu-shuang, WANG Zu-wen. Improving the edible quality of the bran by yeast fermentation[J]. Science and Technology of Food Industry, 2016, (10): 231-235. DOI: 10.13386/j.issn1002-0306.2016.10.038
    [8]LI Ming- juan, YOU Xiang-rong, ZHANG Ya-yuan, LIAO Fen, SUN Jian, QIN Gang, WEI Ping, LI Zhi-chun, YANG Mei, XIE Xiao-qiang. Effects of the sugarcane leaves biochar powder on the sensory quality and texture characteristics of biscuits[J]. Science and Technology of Food Industry, 2016, (05): 98-103. DOI: 10.13386/j.issn1002-0306.2016.05.011
    [9]LI Zhen-zi, YANG Ju-tian, SONG Qiao, ZANG Rong-xin. Edible quality of Lanzhou fat-tailed sheep in different gender and anatomical regions[J]. Science and Technology of Food Industry, 2014, (17): 354-357. DOI: 10.13386/j.issn1002-0306.2014.17.071
    [10]ZHANG Ling-wen, JI Hong-fang, YANG Ming-duo, MA Han-jun, ZHANG Fan. Effect of rice flour on edible quality of crusts from deep-fat-fried battered food[J]. Science and Technology of Food Industry, 2014, (09): 87-90. DOI: 10.13386/j.issn1002-0306.2014.09.009
  • Cited by

    Periodical cited type(13)

    1. 赖多,王德林,邵雪花,秦健,庄庆礼,肖维强. 余甘子果实斑点病菌LAMP可视化检测方法的建立. 西北农林科技大学学报(自然科学版). 2025(01): 69-79+90 .
    2. 吴紫彬,邹知静,刘亚男,吴雪辉. 基于模糊数学和响应面法优化余甘子果汁饮料生产工艺. 粮食与油脂. 2024(02): 100-105 .
    3. 姜加良,王雪丽,韩颖,张馨延. 响应面法优化石榴皮百香果果皮复合饮料发酵工艺及抗疲劳功能评价. 中国食品添加剂. 2024(03): 220-228 .
    4. 赖多,王德林,周国昌,邵雪花,秦健,庄庆礼,蔡时可,肖维强. 余甘子斑点病病原菌鉴定、生物学特性及防治药剂筛选. 南方农业学报. 2024(02): 479-488 .
    5. 唐勇琛,张洪平,毛桂福,樊玲凤,杨玉竹,张亚洲. 心脉舒一号口服液质量标准提升研究. 中国药业. 2024(14): 80-83 .
    6. 朱静,陈顺心,张一鸣,陈亚蓝. 不同酵母对圣女果果酒品质及挥发性风味物质的影响. 中国酿造. 2024(09): 177-184 .
    7. 刘一鸣,张运运. 酸枣果肉苦荞复合运动饮料的研制及其抗疲劳活性研究. 食品科技. 2024(12): 79-88 .
    8. 王紫菱,劳嘉,钟灿,贺炜,张水寒,金剑. 食疗中草药乳酸菌发酵与生物转化研究进展与展望. 食品与发酵工业. 2023(08): 318-324+334 .
    9. 蔡宁,于傲,佟永清. 百香果皮酵素饮料研制及对运动耐力的影响. 食品与发酵工业. 2023(10): 230-236 .
    10. 陈来凤,倪琳钰,邓成林,罗亚楠,李海燕,丰贵江,林秋叶. 乳酸菌发酵天麻口服液工艺优化. 食品工业科技. 2023(15): 193-202 . 本站查看
    11. 权树琳,张班,徐瑞豪,王慧慧. 灰树花子实体多糖的结构特性分析及提高小鼠的运动耐力. 现代食品科技. 2023(10): 25-34 .
    12. 雷露,余波,周景瑞,王川南,吴天祥. 天麻、苦荞醇提物对灰树花胞外多糖合成酶类的影响及天麻苦荞醇提物复配发酵液的抗疲劳作用. 现代食品科技. 2022(10): 33-39 .
    13. 李春峰,索文涛. β-环糊精-高良姜素复合物的制备及对小鼠运动疲劳的影响. 中国食品添加剂. 2022(12): 154-161 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (272) PDF downloads (33) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return