WANG Chengfeng, LI Bailiang, YUE Yingxue, CHEN Ziyu, YAN Fenfen, HUO Guicheng, LI Aili. Screening of a Weakly Post-acidified Lactobacillus bulgaricus KLDS1.1011 and Its Genome-wide Annotation[J]. Science and Technology of Food Industry, 2021, 42(6): 103-110. DOI: 10.13386/j.issn1002-0306.2019090296
Citation: WANG Chengfeng, LI Bailiang, YUE Yingxue, CHEN Ziyu, YAN Fenfen, HUO Guicheng, LI Aili. Screening of a Weakly Post-acidified Lactobacillus bulgaricus KLDS1.1011 and Its Genome-wide Annotation[J]. Science and Technology of Food Industry, 2021, 42(6): 103-110. DOI: 10.13386/j.issn1002-0306.2019090296

Screening of a Weakly Post-acidified Lactobacillus bulgaricus KLDS1.1011 and Its Genome-wide Annotation

More Information
  • Received Date: September 26, 2019
  • Available Online: March 15, 2021
  • In order to study the key genes that affect the post-acidification of Lactobacillus bulgaricus, it provides a theoretical basis for the development of yogurt starter at the molecular level. In this experiment, 8 existing Lactobacillus bulgaricus in the laboratory were used as starting strains. Based on their growth performance and acid sensitivity, 4 strains of Lactobacillus bulgaricus(KLDS1.0207, KLDS1.0205, KLDS1.1001, and KLDS1.1011) with obvious differences in acid production were selected. Four strains of Lactobacillus bulgaricus were tested for the curd time, titrated acidity, and lactose consumption of four strains of Lactobacillus bulgaricus single strains. The analysis showed that the strain KLDS1.1011 had the weakest acidification capacity.Genome sequencing of strain KLDS1.1011 via Illumina HiSeq and Illumina MiSeq sequencing platform. The total length of the KLDS1.1011 genome was 1884491 bp.The average G+C content was 39.83%. A total of 2098 CDS were predicted in the genome, with a total length of 1622760 bp.The total length of the coding region accounted for 85.97% of the whole genome and the average length of the coding gene was 773 bp. The genomes of Lactobacillus bulgaricus KLDS1.1011 and KLDS1.0207 were used homology cluster analysis to compare. It was found that there were 1631 genes in common, KLDS1.1011 had 353 unique genes, and KLDS1.0207 had 320 unique genes. Furthermore, by annotating the KEGG pathway and analyzing the post-acidification related pathways of the unique genes, 6 genes related to post-acidification were obtained. The four genes 1011_GM000805, 1.1011_GM002068, 1.1011_GM000803, and 1.1011_GM000804 were related to the formation of biofilms and the material transport of strains. 1.1011_GM000260 gene belonged to the pyruvate metabolism pathway and was an important pathway in the lactic acid production process and the 1.1011_GM000194 gene was a key enzyme gene for proteolysis. It would provide an important theoretical basis for the weak post-acidification characteristics of strain KLDS1.1011 at the gene level.
  • [1]
    郭清泉,张兰威,夏秀芳. 酸奶制品发生后酸化主要发酵剂菌确定及性质研究[J]. 食品与发酵工业,2002,28(4):24-27.
    [2]
    徐成勇,吴昊,郑思聪,等.酸乳后酸化影响因子的初步研究[J]. 食品与发酵工业,2006,32(12):10-14.
    [3]
    C.Beal,J.Skokanova,et al. Combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt[J]. Journal of Dairy Science,1999,82(4):673-681.
    [4]
    Ongol M P,Sawatari Y,Ebina Y,et al. Yoghurt fermented by Lactobacillus delbrueckii subsp. bulgaricus H+-ATPase-defective mutants exhibits enhanced viability of Bifidobacterium breve during storage[J]. International Journal of Food Microbiology,2007,116(3):358-366.
    [5]
    Chen M J,Tang H Y,Chiang M L. Effects of heat,cold,acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic,Lactobacillus kefiranofaciens M1[J]. Food Microbiology,2017,66:20-27.
    [6]
    Rivals J P,Catherine Béal,Thammavongs B,et al. Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is modified by acquisition of antibiotic resistance[J]. Cryobiology,2007,55(1):19-26.
    [7]
    Li C,Song J,Kwok L Y,et al. Influence of,Lactobacillus plantarum,on yogurt fermentation properties and subsequent changes during postfermentation storage[J]. Journal of Dairy Science,2017,100(4):2512-2525.
    [8]
    Settachaimongkon S,Van Valenberg H J F,Gazi I,et al. Influence of Lactobacillus plantarum WCFS1 on post-acidification,metabolite formation and survival of starter bacteria in set-yoghurt[J]. Food Microbiology,2016,59:14-22.
    [9]
    Wang T,Xu Z,Lu S,et al. Effects of glutathione on acid stress resistance and symbiosis between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus[J]. International Dairy Journal,2016,61:22-28.
    [10]
    Elisabetta Benozzi,Romano A,Capozzi V,et al. Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds[J]. Food Research International,2015,76:682-688.
    [11]
    Indyk H E,Edwards M J,Woollard D C. High performance liquid chromatographic analysis of lactose-hydrolysedmilk[J]. Food Chemistry,1996,57(4):575-580.
    [12]
    丁秀云,蒙月月,李柏良,等. 嗜热链球菌KLDSSM胞外多糖生物合成途径的分析[J].食品工业科技,2017(12):157-162.
    [13]
    张文羿,孟和,张和平. 乳酸菌基因组学研究进展[J].微生物学报,2008,48(9):1270-1275.
    [14]
    Van d G M,Penaud S,Grimaldi C,et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(24):9274-9279.
    [15]
    Tanigawa K,Watanabe K. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii[J]. Microbiology,2011,157(3):727-738.
    [16]
    Song Y,Sun Z,Guo C,et al. isolated from naturally fermented dairy foods[J]. Scientific Reports,2016,6:22704.
    [17]
    程娜. 基于组学技术解析保加利亚乳杆菌LJJ的耐酸机制[D].临汾:山西师范大学,2018.
    [18]
    孙懿琳,田辉,方伟,等.保加利亚乳杆菌关键糖代谢机制的研究[J]. 食品工业科技,2012,33(22):202-205.
    [19]
    李柏良,丁秀云,靳妲,等. 基于基因组学分析嗜热链球菌KLDS SM的蛋白质水解系统和氨基酸合成途径[J].食品科学,2018(1):120-126.
    [20]
    Feng Q,Huang T,Zhao Q,et al. Analysis of collinear regions of Oryza AA and CC genomes[J]. Journal of Genetics and Genomics,2009,36(11):667-677.
    [21]
    Li B,Ding X,Evivie S E,et al. Short communication:Genomic and phenotypic analyses of exopolysaccharides produced by,Streptococcus thermophilus,KLDS SM[J]. Journal of Dairy Science,2017,101(1):106-112.
    [22]
    Hui T,Bailiang L,Smith E,et al. Technological and genomic analysis of roles of the cell-envelope protease PrtS in yoghurt starter development[J]. International Journal of Molecular Sciences,2018,19(4):1068.
    [23]
    Salmon-Divon M,Dvinge H,Tammoja K,et al. PeakAnalyzer:Genome-wide annotation of chromatin binding and modification loci[J]. BMC Bioinformatics,2010,11(1):415.
    [24]
    Schmid R,Blaxter M L. Annot8r:GO,EC and KEGG annotation of EST datasets[J]. Bmc Bioinformatics,2008,9(1):180.
    [25]
    Galperin M Y,Makarova K S,Wolf Y I,et al. Expanded microbial genome coverage and improved protein family annotation in the COG database[J]. Nucleic Acids Research,2015,43(D1):D261-D269.
    [26]
    Hickey M W,Hillier A J,Jago G R. Transport and metabolism of lactose,glucose,and galactose in homofermentative lactobacilli[J]. Applied & Environmental Microbiology,1986,51(4):825-831.
    [27]
    Aat Ledeboer,Jeroen Hugenholtz,Jan Kok,et al. Thirty years of research on lactic acid bacteria[M]. Holland:Max Blngham,2011:493-535.
    [28]
    韩巍巍,侯俊财,曹秋阁,等. 不同生长阶段保加利亚乳杆菌关键蛋白酶基因表达变化规律[J]. 食品与发酵工业,2014,40(3):13-19.
    [29]
    Leong-Morgenthaler,P,Zwahlen,M C,Hottinger,H. Lactose metabolism in Lactobacillus bulgaricus:Analysis of the primary structure and expression of the genes involved[J]. Journal of Bacteriology,1991,173(6):1951-1957.
    [30]
    Fernandez A,Ogawa J,Stéphanie Penaud,et al. Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus[J]. Proteomics,2008,8(15):3154-3163.
  • Cited by

    Periodical cited type(11)

    1. 张新圻,朱顺华,钟秀来,罗庆,熊爱生,谭国飞. 不同水芹种质资源的形态、花青素含量及相关基因表达量分析. 贵州师范大学学报(自然科学版). 2025(02): 105-113 .
    2. 张博,王雨婷,刘洁,李加会,吴鸿飞. 经典药对“瓜蒌-薤白”治疗痰瘀互结心血管疾病的血清代谢组学研究. 中国中药杂志. 2024(01): 232-242 .
    3. 罗庆,张新圻,李梦瑶,朱顺华,熊爱生,谭国飞. 药食同源植物水芹的研究进展. 植物遗传资源学报. 2024(08): 1221-1233 .
    4. 邢啸林,陈丹,况勇,徐文娟,黄然,甘德芳. 水芹SSR分子标记开发与遗传多样性分析. 江苏农业学报. 2024(07): 1285-1296 .
    5. 李冬霞,张凡,王洧,南建. 水芹贮藏保鲜和开发利用研究进展. 农产品加工. 2023(02): 66-69+72 .
    6. 朱顺华,罗庆,李梦瑶,孟平红,钟秀来,王堃,陈志峰,谭国飞,熊爱生. 水芹雄性不育材料的鉴定及营养品质分析. 植物科学学报. 2023(03): 343-348 .
    7. 倪子怡,许海,詹旭,朱广伟,程新良,胡亮,王裕成,郑文婷. 刈割对千岛湖生态浮床植物生长与氮素净化效率的影响. 环境工程学报. 2023(08): 2494-2504 .
    8. 刘杰,刘吉祥,常雅军,陈婷,刘晓静,孙林鹤,姚东瑞. LC-SIM-Orbitraq测定无土栽培水芹不同器官中有机酸含量. 中国瓜菜. 2023(09): 80-86 .
    9. 王丹,万娜,黄金妮,陈敏妮,杨兹伟,汤祝华. 多壁碳纳米管净化-色谱质谱技术测定水芹中多农药残留. 食品科技. 2023(09): 276-284 .
    10. 刘吉祥,杜凤凤,孙林鹤,王巍,赵慧君,姚东瑞,常雅军. 无土栽培水芹不同器官的氨基酸特征及其资源化利用潜力分析. 中国蔬菜. 2022(07): 34-44 .
    11. 季青霞,陈伟,毕艳红,赵祥杰,白青云,王朝宇. 超声波辅助提取水芹中黄酮类化合物的工艺研究. 包装与食品机械. 2022(06): 25-30+38 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (272) PDF downloads (33) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return