GU Xiaomin, YANG Hailong, HAN Yanchao, et al. Analysis on the Morphology and Quality Characteristics of Different Varieties of Lotus Root Starch and Whole Powder[J]. Science and Technology of Food Industry, 2021, 42(23): 95−101. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.201050168.
Citation: GU Xiaomin, YANG Hailong, HAN Yanchao, et al. Analysis on the Morphology and Quality Characteristics of Different Varieties of Lotus Root Starch and Whole Powder[J]. Science and Technology of Food Industry, 2021, 42(23): 95−101. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.201050168.

Analysis on the Morphology and Quality Characteristics of Different Varieties of Lotus Root Starch and Whole Powder

More Information
  • Received Date: May 19, 2021
  • Available Online: October 07, 2021
  • The present work reported the differences in the between particle morphology, gelatinization properties, thermal properties and texture propertiesmorphology and quality characteristics of starch particles and whole powders obtained from six different varieties of lotus root. The results showed that the surface of lotus root starch particles was smooth without cracks, but with depressions. Most of the particles were short rod-shaped, but some were elliptical; the whole lotus root powder had rough surface and irregular shape.Remove'Elian No.1' 5other was significant difference between lotus root starch and whole flour in the brightness, but the transparency of starch wassignificantly higher than that of whole flour. The initial gelatinization temperature and enthalpy change value of lotus root starch were higher than that of whole lotus root starch. The gelatinization temperature of starch particlesobtained from 'Hangzhouhuanghetou' was 63.9 ℃, the highest gelatinization temperature among testing samples. The gelatinization temperature of 'Elian No. 6'whole powder was 55.0 ℃, the lowest gelatinization temperature among testing samples.Lotus root starch had better expansion properties and thermal paste stability, and lotus root whole powder hadbetter cold paste stability. The chewiness and ductility of lotus root starch were generally lower than that of whole lotus root powder, butthe elasticity and hardness were similar. Among samples, the chewiness and ductility of whole lotus root starch obtained from 'Elian No. 1' were higher than other varieties.
  • [1]
    LI J H, SHI J Y, HUANG X W, et al. Effects of pulsed electric field pretreatment on frying quality of fresh-cut lotus root slices[J]. Food Science and Technology,2020,132:109873.
    [2]
    MIN T, NIU L F, FENG X Y, et al. The effects of different temperatures on the storage characteristics of lotus (Nelumbo nucifera G.) root[J]. Food Chemistry,2021,348:129109.
    [3]
    韩卓, 陈晓燕, 李延红, 等. 速溶型营养藕粉加工工艺研究[J]. 安徽农业科学,2012,40(36):17758−17760. [HAN Z, CHEN X Y, LI Y H, et al. Research on processing technology of instant beverage of lotus root powder[J]. Journal of Anhui Agricultural,2012,40(36):17758−17760.
    [4]
    韩苗苗, 胡晓潇, 吴文钦, 等. 莲藕蜜饯加工及保藏工艺优化[J]. 食品科技,2016,41(8):89−93. [HAN M M, HU X X, WU W Q, et al. Optimization on the proeessing and preservation technologies of candied loots root[J]. Food Science and Technology,2016,41(8):89−93.
    [5]
    时伟, 何珺珺, 张春林, 等. 一种莲藕酒澄清工艺研究[J]. 食品研究与开发,2019,40(16):46−50. [SHI W, HE J J, ZHANG C L, et al. Research on the clarification process of lotus wine[J]. Food Research and Development,2019,40(16):46−50.
    [6]
    宋哲, 汪兰, 何会, 等. 不同生长期莲藕淀粉的凝胶特性、热重与核磁共振测定[J]. 食品科学,2009,30(23):105−109. [SONG Z, WANG L, HE H, et al. Thermal gravimetric, gel texture and water mobility of lotus root starch in different growth periods[J]. Food Science,2009,30(23):105−109.
    [7]
    路志芳, 袁超, 郝贵增, 等. 莲藕淀粉的特性研究[J]. 江苏农业科学,2017,45(15):157−160. [LU Z F, YUAN C, HAO G Z, et al. Study on the properties of lotus root starch[J]. Jiangsu Agricultural Sciences,2017,45(15):157−160.
    [8]
    MAN J M, CAI J W, CAI C H, et al. Comparison of physicochemical properties of starches from seed and rhizome of lotus[J]. Carbohydrate Polymers,2012,88(2):676−683.
    [9]
    GANI A, MASOODI F A, WANI S M. Characterization of lotus stem (Nelumbo nucifera) starches purified from three lakes of India[J]. Journal of Aquatic Food Product Technology,2013,22(6):605−618.
    [10]
    余清清, 张美霞, 陈光静, 等. 藕淀粉和超微全藕粉的糊化特性研究[J]. 食品与发酵工业,2018,44(11):130−137. [YU Q Q, ZHANG M X, CHEN G J, et al. Pasting properties of lotus root starch and super-fine whole lotus root starch[J]. Food and Fermentation Industries,2018,44(11):130−137.
    [11]
    张美霞, 琚争艳, 阚建全. 超微全藕粉与藕淀粉颗粒结构的比较研究[J]. 食品科学,2009,30(7):83−86. [ZHANG M X, JU Z Y, KAN J Q. Comparison analysis of granule structure between lotus ltarch and luper-fine whole lotus powder[J]. Food Science,2009,30(7):83−86.
    [12]
    钱文文, 李帅, 王春辉, 等. 不同品种莲藕淀粉的颗粒形态及流变特性研究[J]. 食品工业科技,2012,33(4):195−199. [QIAN W W, LI S, WANG C H, et al. Study on the morphological and rheological propertiesof starch separated from four sorts of lotus roots[J]. Science and Technology of Food Industry,2012,33(4):195−199.
    [13]
    张美霞. 全藕粉生产过程中护色技术的研究[J]. 食品工业科技,2012,33(13):283−284. [ZHANG M X. Study on the anti-browness technique for whole-lotus powder process[J]. Science and Technology of Food Industry,2012,33(13):283−284.
    [14]
    CHEN X, DU X, CHEN P, et al. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment[J]. Carbohydrate Polymers,2017,157:637−642.
    [15]
    吴琼, 曹慧馨, 王旭升, 等. 响应面法优化超声波辅助提取高粱淀粉的研究[J]. 食品科技,2020,45(11):212−216. [WU Q, CAO H X, WANG X S, et al. Optimization of ultrasonic extractionprocess parameters of sorghum starch byresponse surface methodology[J]. Food Technology,2020,45(11):212−216.
    [16]
    PUNIA S, DHULLh S B, KUNNER P, et al. Effect of γ-radiation on physico-chemical, morphological and thermal characteristics of lotus seed (Nelumbo nucifera) starch[J]. International Journal of Biological Macromolecules,2020,157:584−590.
    [17]
    LIU D, LI Z, Fan Z W, et al. Effect of soybean soluble polysaccharide on the pasting, gels, and rheological properties of kudzu and lotus starches[J]. Food Hydrocolloids,2019,89:443−452.
    [18]
    ALI N A, DASH K K, ROUTRAYO W. Physicochemical characterization of modified lotus seed starch obtained through acid and heat moisture treatment[J]. Food Chemistry,2020,319:126513.
    [19]
    唐小闲, 罗杨合, 汤泉, 等. 马蹄湿淀粉微波干燥的实验研究[J]. 食品工业科技,2017,38(11):107−110. [TANG X X, LUO Y H, TANG Q, et al. Experiment study on the microwave drying for water chestnut starch[J]. Science and Technology of Food Industry,2017,38(11):107−110.
    [20]
    张慧娟, 王静, 刘英丽, 等. 碱法提取青稞淀粉的理化性质研究[J]. 中国食品学报,2016,16(3):75−80. [ZHANG H J, WANG J, LIU Y L, et al. Study on the physical and chemical properties of highland barley starch extracted by alkali method[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(3):75−80.
    [21]
    LING L S, HUANG J, ZHAO L X, et al. Effect of granule size on the properties of lotus rhizome C-type starch[J]. Carbohydrate Polymers,2015,134:448−457.
    [22]
    李真, 安阳, 艾志录, 等. 不同类型变性淀粉的理化特性比较[J]. 中国食品学报,2019,19(4):280−286. [LI Z, AN Y, AI Z L, et al. Studies on physico-chemical properties of different types modified starches[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(4):280−286.
    [23]
    邓源喜, 宛劲松, 宛兴胜, 等. 莲藕护色保鲜技术研究进展[J]. 安徽农学通报,2019,25(14):104−105. [DENG Y X, WAN J S, WAN X S, et al. Research progress of color protection and preservation technology of lotus roots[J]. Anhui Agri Science Bull,2019,25(14):104−105.
    [24]
    唐小闲, 汤泉, 段振华, 等. 不同干燥方式对莲藕淀粉品质特性的影响[J]. 食品工业科技,2019,40(6):26−30. [TANG X X, TANG Q, DUAN Z H, et al. Effects of different drying methodson quality properties of lotus root starch[J]. Science and Technology of Food Industry,2019,40(6):26−30.
    [25]
    豁银强, 王尧, 陈江平, 等. 高能球磨对大米淀粉物化特性和结构的影响[J]. 食品科学,2020,41(13):89−95. [HUO Y Q, WANG Y, CHEN J P, et al. Effects of high energy ball milling on physicochemical properties and structure of rice starch[J]. Food Science,2020,41(13):89−95.
    [26]
    MISHRA S, RAI T. Morphology and functional properties of corn, potato and tapioca starches[J]. Food Hydrocolloids,2005,20(5):557−566.
    [27]
    MIAO M, ZHANG T, JIANG B. Characterisations of kabuli and desi chickpea starches cultivated in China[J]. Food Chemistry,2009,113(4):1025−1032.
    [28]
    YU H G, CHENG L B, YIN J J, et al. Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome[J]. Food Science & Nutrition,2013,1(4):273−283.
    [29]
    李文浩, 谭斌, 刘宏, 等. 我国9个品种绿豆淀粉的理化特性研究[J]. 中国食品学报,2013,13(4):58−64. [LI W H, TAN B, LIU H, et al. Physicochemical properties of starches separated from nine mung bean varieties grown in China[J]. Journal of Chinese Institute of Food Science and Technology,2013,13(4):58−64.
    [30]
    陈振家, 王美玉, 陈丽, 等. 不同产地燕麦品种营养组成属性分析[J]. 农产品加工,2020(24):43−45. [CHEN Z J, WANG M Y, CHEN L, et al. Analysis of the nutritional components of different oat cultivars[J]. Farm Products Processing,2020(24):43−45.
    [31]
    林鑫, 杨宏. 食品胶协同干热处理对马铃薯淀粉理化特性的影响[J]. 食品科技,2021,46(3):245−252. [LIN X, YANG H. Effects of food gums combined with dry heating on physicochemical properties of potato starch[J]. Food Science and Technology,2021,46(3):245−252.
    [32]
    高晴, 郑学玲, 刘翀. 不同热处理对玉米粉理化性质影响[J]. 粮食加工,2017,42(5):66−69. [GAO Q, ZHENG X L, LIU C. Effects of different heat treatments on the physical and chemical properties of corn flour[J]. Crrin Processing,2017,42(5):66−69.
    [33]
    项丽霞, 田翠华, 李洁, 等. 莲藕淀粉糊化温度的测定[J]. 食品工业科技,2006,27(2):63−64. [XIANG L X, TIAN C H, LI J, et al. Determination of gelatinization temperature of lotus root starch[J]. Science and Technology of Food Industry,2006,27(2):63−64.
    [34]
    XIE Y L, YAN M X, YUAN S M, et al. Effect of microwave treatment on the physicochemical properties of potato starch granules[J]. Springer International Publishing,2013,7(1):1−7.
    [35]
    罗红霞, 王丽, 句荣辉, 等. 不同品种谷子淀粉的品质特性及主成分分析[J]. 食品工业科技,2018,39(24):11−17. [LUE H X, WANG L, JU R H, et al. Quality characteristics and principal component analysis of different varieties of millet starch[J]. Science and Technology of Food Industry,2018,39(24):11−17.
    [36]
    MUDGIL D, BARAK S, KHATKAR B S. Optimization of textural properties of noodles with soluble fiber, dough mixing time and different water levels[J]. Journal of Cereal Science,2016,69:104−110.
    [37]
    张晶, 张美莉. 超高压处理对燕麦淀粉颗粒特性、热特性及流变学特性的影响[J]. 食品科学,2020,41(23):114−121. [ZHANG J, ZHANG M L. Effect of high hydrostatic pressure treatment on morphological, thermal and rheological properties of oat starch[J]. Food Science,2020,41(23):114−121.
  • Cited by

    Periodical cited type(12)

    1. 高树财,闫格,胡桂芳,高火亮. 茶饮料中茶多酚含量测定方法的研究. 标准科学. 2025(01): 99-103 .
    2. 邓婷婷,皮锦蝉,彭小平,姚于飞,李义全,李文娟. 茶多酚基于活性氧-线粒体途径发挥心血管保护作用的研究进展. 食品工业科技. 2025(04): 434-442 . 本站查看
    3. 蔡妙莹,钟雪莲,胡新涛,袁炎茹,梁花. 改性纤维中总多酚含量的测定. 中国纤检. 2025(03): 66-69 .
    4. 苟祎,夏丽飞,马玉青,杨恺清,吴致远,普金霞,叶红,申时全. 不同花期紫娟茶树花的品质分析及加工工艺研究. 食品科技. 2025(02): 96-104 .
    5. 田宝明,叶芃,孔俊涛,杨开,孙培龙,陈红平,王舰,张相春. 茶多酚自组装纳米泡腾片的研制. 中国茶叶加工. 2024(02): 33-40 .
    6. 陈俊婕,劳颖仪,陈晓维,余元善,温靖,吴继军,徐玉娟,肖更生,杨继国,唐延天,胡腾根. 茶多酚的功能活性及稳态化研究进展. 中国果菜. 2024(08): 25-31 .
    7. 葛天睿,黄雪君,张娜,陈小强,沙如意,毛建卫. 茶多酚在医药和食品领域的应用研究进展. 食品安全质量检测学报. 2024(17): 176-184 .
    8. 朱旋,田芸,孙海燕,王瑞,金文刚,陈琛. 茶多酚结合超高压处理对鲜切天麻贮藏品质的影响. 北方园艺. 2024(20): 83-90 .
    9. 韩舒婷,华梓延,房耀维,杨光,侯晓月,周文梅,唐明,刘姝. 嗜热链球菌FUA329发酵绿茶浸提液及贮藏特性评价. 食品工业科技. 2024(21): 322-328 . 本站查看
    10. 辛皎瑜,钟雅静,沈启东,敖娜,梁玉文,付晶,刘春朋. 鹧鸪源大肠杆菌分离鉴定及茶多酚抑菌效果研究. 东北农业大学学报. 2024(07): 51-59 .
    11. 陈晓真,韦怡含,蓝平,封余贤,黎笑笑,关欣,冯杰,何日梅. 茶多酚的提取纯化技术研究进展. 中国酿造. 2024(11): 20-25 .
    12. 吴彤,刘丽莉,程伟伟,丁玥,徐宝成. NaCl和茶多酚对碱诱导鸡蛋清凝胶流变学特性及结构的影响. 食品与发酵工业. 2024(23): 194-201 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (383) PDF downloads (26) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return