ZHI Dexian, ZHANG Ni, LI Jianying. Microwave-Ultrasonic Extraction of Proanthocyanidins from Nitraria and Its Antioxidant Analysis[J]. Science and Technology of Food Industry, 2022, 43(13): 171−179. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100056.
Citation: ZHI Dexian, ZHANG Ni, LI Jianying. Microwave-Ultrasonic Extraction of Proanthocyanidins from Nitraria and Its Antioxidant Analysis[J]. Science and Technology of Food Industry, 2022, 43(13): 171−179. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100056.

Microwave-Ultrasonic Extraction of Proanthocyanidins from Nitraria and Its Antioxidant Analysis

More Information
  • Received Date: October 11, 2021
  • Available Online: April 21, 2022
  • The single-factor combined response surface method was used to optimize the microwave-ultrasonic extraction of Nitraria tangutorum proanthocyanidins, and their antioxidant activity was evaluated by assessing ABTS and DPPH free radical scavenging capacity and total reduction ability. The results showed that the liquid–material ratio, ethanol concentration, microwave time and ultrasonic temperature had significant effects on the extraction rate of proanthocyanidins. The optimal extraction conditions were as follows: ethanol concentration of 65%, liquid-material ratio of 14.5 mL/g, microwave time of 2 min, and ultrasonic temperature of 50 ℃. The average extraction rate of proanthocyanidins from Nitraria tangutorum was (17.289±0.402) mg/g, with only a 2.4% difference from the theoretical prediction, indicating that the optimal extraction conditions optimized by the model were stable and reliable and had practical application value. The purity of the extract after purification with macroporous resin reached 81.4%. The results of in vitro antioxidant experiments showed that the proanthocyanidins of Nitraria tangutorum had suitable ABTS (IC50=0.261 mg/mL) and DPPH (IC50=0.159 mg/mL) free radical strong scavenging capacity, it also had a certain ability to scavenging hydroxyl radicals (IC50=0.712 mg/mL), with good reduction ability. Therefore, microwave-ultrasonic combine can improve the extraction efficiency significantly, and Nitraria tangutorum proanthocyanidins has strong anti-oxidative activity in vitro. It provides a scientific reference for the comprehensive utilization of Nitraria.
  • [1]
    春亮, 那日苏, 赵山志, 等. 白刺属植物资源及其利用[J]. 中国野生植物资源,2016,35(3):58−60, 63. [CHUN Liang, NA Risu, ZHAO Shanzhi, et al. The resources and applications of Nitraria L doi: 10.3969/j.issn.1006-9690.2016.03.015

    J]. Chinese Wild Plant Resources,2016,35(3):58−60, 63. doi: 10.3969/j.issn.1006-9690.2016.03.015
    [2]
    杨仁明, 索有瑞, 王洪伦. 唐古特白刺果实化学成分和功效作用研究进展[J]. 天然产物研究与开发,2012,24(7):985−989, 1005. [YANG Renming, SUO Yourui, WANG Honglun. Studies on chemical constituents and pharmacological effects of Nitraria tangutorum Bobr. fruit[J]. Natural Product Research and Development,2012,24(7):985−989, 1005. doi: 10.3969/j.issn.1001-6880.2012.07.029

    YANG Renming, SUO Yourui, WANG Honglun. Studies on chemical constituents and pharmacological effects of Nitraria tangutorum Bobr. fruit[J]. Natural Product Research and Development, 2012, 24(7): 985-989, 1005. doi: 10.3969/j.issn.1001-6880.2012.07.029
    [3]
    索有瑞, 汪汉卿. 青海柴达木盆地唐古特白刺果实的降血糖作用研究[J]. 食品科学,2004(7):164−167. [SUO Yourui, WANG Hanqing. Studies on hypoglycemic effect of fruit of Nitraria tangutorum Bobr. from Qinghai Tsaidam Basin[J]. Food Science,2004(7):164−167. doi: 10.3321/j.issn:1002-6630.2004.07.039

    SUO Yourui, WANG Hanqing. Studies on hypoglycemic effect of fruit of Nitraria Tangutorum Bobr. from Qinghai Tsaidam Basin[J]. Food Science, 2004(7): 164-167. doi: 10.3321/j.issn:1002-6630.2004.07.039
    [4]
    JIANG S R, CHEN C, DONG Q, et al. Alkaloids and phenolics identification in fruit of Nitraria tangutorum Bobr. by UPLC-Q-TOF-MS/MS and their a-glucosidase inhibitory effects in vivo and in vitro[J]. Food Chemistry,2021,364:130412. doi: 10.1016/j.foodchem.2021.130412
    [5]
    SENEJOUX F, GIRARD C, AISA H A, et al. Vasore laxant and hypotensive effects of a hydroa lcoholic extract from the fruits of Nitraria sibirica Pall. (Nitrariaceae)[J]. Journal of Ethnopharmacology,2012,141(2):629−634. doi: 10.1016/j.jep.2011.08.012
    [6]
    MENG J, DENG K, HU N, et al. Nitraria tangutorum Bobr. derived polysaccharides protect against LPS-induced lung injury[J]. International Journal of Biological Macromolecules,2021,186:71−78. doi: 10.1016/j.ijbiomac.2021.06.181
    [7]
    索有瑞, 李玉林, 王洪伦, 等. 柴达木盆地唐古特白刺果实调节免疫、抗疲劳和耐寒冷作用研究[J]. 天然产物研究与开发,2005(6):717−721. [SUO Yourui, LI Yulin, WANG Honglun, et al. Effect of fruit of Nitraria tangutorum Bobr. from Qaidam Basin on immunomodulatory, anti-fatigue and cold-tolerance[J]. Natural Product Research and Development,2005(6):717−721. doi: 10.3969/j.issn.1001-6880.2005.06.011

    SUO Yourui, LI Yulin, WANG Honglun et al. Effect of fruit of Nitraria tangutorum Bobr. from Qaidam Basin on immunomodulatory, anti-fatigue and cold-tolerance[J]. Natural Product Research and Development, 2005(6): 717-721. doi: 10.3969/j.issn.1001-6880.2005.06.011
    [8]
    CHEN S S, ZHOU H N, ZHANG G, et al. Characterization, antioxidant, and neuroprotective effects of anthocyanins from Nitraria tangutorum Bobr. fruit[J]. Food Chemistry,2021,353:129435. doi: 10.1016/j.foodchem.2021.129435
    [9]
    DOWNING L E, FERGUSON B S, RODRIGUEZ K, et al. A grape seed procyanidin extract inhibits HDAC activity leading to increased Ppar phosphorylation and target-gene expression[J]. Molecular Nutrition & Food Research,2017,61(2):1600347.
    [10]
    JANKOVIC G, MARINKO M, MILOJEVIC P, et al. Mechanisms of endothelium-dependent vasorelaxation induced by procyanidin B2 in venous bypass graft-Science Direct[J]. Journal of Pharmacological Sciences,2020,142(3):101−108. doi: 10.1016/j.jphs.2019.11.006
    [11]
    GONZALEZ-QUILEN C, RODRIGUEZ-GALLEGO E, BELTRAN-DEBON R, et al. Health-promoting properties of proanthocyanidins for intestinal dysfunction[J]. Nutrients,2020,12(1):130. doi: 10.3390/nu12010130
    [12]
    GONG X, XU L, FANG X, et al. Protective effects of grape seed procyanidin on isoflurane-induced cognitive impairment in mice[J]. Pharmaceutical Biology,2020,58(1):200−207. doi: 10.1080/13880209.2020.1730913
    [13]
    黄雪秋, 韦有杰, 谢彝健, 等. 葡萄籽中原花青素的提取及在护肤品中的应用[J]. 山东化工,2019,48(18):5−6, 8. [HUANG Xueqiu, WEI Youjie, XIE Yijian et al. Extraction of procyanidins from grape seeds and its application in skin care products[J]. Shandong Chemical Industry,2019,48(18):5−6, 8. doi: 10.3969/j.issn.1008-021X.2019.18.004

    HUANG Xueqiu, WEI Youjie, XIE Yijian et al. Extraction of procyanidins from grape seeds and its application in skin care products[J]. Shandong Chemical Industry, 2019, 48(18): 5-6, 8. doi: 10.3969/j.issn.1008-021X.2019.18.004
    [14]
    CAO J L, YU X L, DENG Z Y, et al. Chemical compositions, antiobesity, and antioxidant effects of proanthocyanidins from lotus seed epicarp and lotus seed pot[J]. Journal of Agricultural & Food Chemistry,2018,66(51):13492−13502.
    [15]
    郗艳丽, 周旋, 霍明洋, 等. 响应面法优化女贞子原花青素工艺及抗氧化研究[J]. 食品研究与开发,2020,41(17):74−81. [XI Yanli, ZHOU Xuan, HUO Mingyang, et al. Optimization of extraction process of proanthocyanidins from the Ligustrum lucidum ait by response surface methodology and evaluation of its antioxidant activity[J]. Food Research and Development,2020,41(17):74−81.

    XI Yanli, ZHOU Xuan, HUO Mingyang, et al. Optimization of extraction process of proanthocyanidins from the Ligustrum lucidum ait by response surface methodology and evaluation of its antioxidant activity[J]. Food Research and Development, 2020, 41(17): 74-81.
    [16]
    黄婷, 周璐, 梅婵, 等. 枸杞中原花青素和总黄酮的抗氧化活性研究[J]. 生物化工,2020,6(1):72−75. [HUANG Ting, ZHOU Lu, MEI Chan, et al. Study on antioxidant activity of proanthocyanidin and total flavones in wolfberry[J]. Biological Chemical Engineering,2020,6(1):72−75. doi: 10.3969/j.issn.2096-0387.2020.01.020

    HUANG Ting, ZHOU Lu, MEI Chan, et al. Study on antioxidant activity of proanthocyanidin and total flavones in wolfberry[J]. Biological Chemical Engineering, 2020, 6(1): 72-75. doi: 10.3969/j.issn.2096-0387.2020.01.020
    [17]
    BODOIRA R, ROSSI Y, MONTENEGRO M, et al. Extraction of antioxidant polyphenolic compounds from peanut skin using water-ethanol at high pressure and temperature conditions[J]. Journal of Supercritical Fluids,2017,128:57−65. doi: 10.1016/j.supflu.2017.05.011
    [18]
    刘玟君, 李金洲, 陈子隽, 等. 原花青素的研究进展[J]. 湖北农业科学,2021,60(14):5−9. [LIU Wenjun, LI Jinzhou, CHEN Zijun, et al. Research progress of procyanidins[J]. Hubei Agricultural Sciences,2021,60(14):5−9.

    LIU Wenjun, LI Jinzhou, CHEN Zijun, et al. Research progress of procyanidins[J]. Hubei Agricultural Sciences, 2021, 60(14): 5-9.
    [19]
    李瑞丽, 张玎婕, 赵琪, 等. 响应面法优化超声辅助浸提葡萄籽原花青素[J]. 食品研究与开发,2021,42(15):53−60. [LI Ruili, ZHANG Dingjie, ZHAO Qi, et al. Optimization of ultrasonic assisted extraction of procyanidins from grape seeds based on response surface method[J]. Food Research and Development,2021,42(15):53−60.

    LI Ruili, ZHANG Dingjie, ZHAO Qi, et al. Optimization of ultrasonic assisted extraction of procyanidins from grape seeds based on response surface method[J]. Food Research and Development, 2021, 42(15): 53-60.
    [20]
    李瑞丽, 尹冬辰, 杨泽恩, 等. 葡萄籽原花青素的微波萃取工艺优化[J]. 粮食与油脂,2021,34(10):83−86. [LI Ruili, YIN Dongchen, YANG Zeen, et al. Optimization of microwave extraction of procyanidins from grape seeds[J]. Cereals & Oils,2021,34(10):83−86. doi: 10.3969/j.issn.1008-9578.2021.10.020

    LI Ruili, YIN Dongchen, YANG Zeen, et al. Optimization of microwave extraction of procyanidins from grape seeds[J]. Cereals & Oils, 2021, 34(10): 83-86. doi: 10.3969/j.issn.1008-9578.2021.10.020
    [21]
    魏文慧, 刘小波, 于长青, 等. 超声-微波协同优化啤酒花残渣中原花青素的提取工艺[J]. 食品工业科技,2020,41(21):185−192. [WEI Wenhui, LIU Xiaobo, YU Changqing, et al. Optimization of ultrasonic-microwave assisted extraction of procyanidins from hops residue[J]. Science and Technology of Food Industry,2020,41(21):185−192.

    WEI Wenhui, LIU Xiaobo, YU Changqing, et al. Optimization of ultrasonic-microwave assisted extraction of procyanidins from hops residue[J]. Science and Technology of Food Industry, 2020, 41(21): 185-192.
    [22]
    王娜, 崔晨旭, 郑玉茹, 等. 超声-微波协同优化花生红衣原花青素提取工艺及抗氧化研究[J]. 食品研究与开发,2021,42(16):135−143. [WANG Na, CUI Chenxu, ZHENG Yuru, et al. Optimization of ultrasonic-microwave assisted extraction of procyanidins from peanut skin and evaluation of their antioxidant activity[J]. Food Research and Development,2021,42(16):135−143.

    WANG Na, CUI Chenxu, ZHENG Yuru, et al. Optimization of ultrasonic-microwave assisted extraction of procyanidins from peanut skin and evaluation of their antioxidant activity[J]. Food Research and Development, 2021, 42(16): 135-143.
    [23]
    何志贵, 徐祥林, 崔莹莹, 等. 三叶青原花青素纯化工艺及抗氧化、α-葡萄糖苷酶抑制活性研究[J/OL]. 食品工业科技. https://doi.org/10.13386/j.issn1002-0306.2021060194.

    HE Zhigui, XU Xianglin, CUI Yingying, et al. Study on purification process and antioxidative activity and α-glucosidas inhibitory activity of Tetrastigma hemsleyanum[J/OL]. Science and Technology of Food Industry. https://doi.org/10.13386/j.issn1002-0306.2021060194.
    [24]
    张丽明, 马雅鸽, 牛若楠, 等. 宾川葡萄籽原花青素纯化及对HepG2 细胞增殖的影响[J/OL]. 食品工业科技. https://doi.org/10.13386/j.issn1002-0306.2021070177.

    ZHANG Liming, MA Yage, NIU Ruonan, et al. Purification of proanthocyanidins from Binchuan grape seed and its effects on proliferation of HepG2 cells[J/OL]. Science and Technology of Food Industry. https://doi.org/10.13386/j.issn1002-0306.2021070177.
    [25]
    谢瑞, 魏艳霞, 丁玉竹, 等. 不同处理方法对白刺多糖抗氧化活性的影响[J]. 天然产物研究与开发,2016,28(1):41−45, 130. [XIE Rui, WEI Yanxia, DING Yuzhu, et al. Effects of different processing methods on the antioxidant activity of polysaccharide from Nitraria sibirica Pall[J]. Natural Product Research and Development,2016,28(1):41−45, 130.

    XIE Rui, WEI Yan-xia, DING Yu-zhu, et al. Effects of different processing methods on the antioxidant activity of polysaccharide from Nitraria sibirica Pall[J]. Natural Product Research and Development, 2016, 28(1): 41-45+130.
    [26]
    王伟, 布丽根·加冷别克, 胡晓东. 葡萄籽原花青素的提取工艺优化及其抗氧化活性研究[J]. 保鲜与加工,2020,20(6):101−108. [WANG Wei, BULIGEN·Jialengbieke, HU Xiaodong. Optimization of extraction technique of proanthocyanidins from grape seed and its antioxidant activity[J]. Storage and Process,2020,20(6):101−108. doi: 10.3969/j.issn.1009-6221.2020.06.016

    WANG Wei, BULIGEN·Jialengbieke, HU Xiaodong. Optimization of extraction technique of proanthocyanidins from grape seed and its antioxidant activity[J]. Storage and Process, 2020, 20(6): 101-108. doi: 10.3969/j.issn.1009-6221.2020.06.016
    [27]
    李颖晨, 李蕾, 王兴达, 等. 超声辅助提取青稞中原花青素的工艺优化及活性研究[J]. 华西药学杂志,2018,33(2):152−156. [LI Yingchen, LI Lei, WANG Xingda, et al. Study on the extraction process optimization and the activity of procyandines of highland barley[J]. West China Journal of Pharmaceutical Sciences,2018,33(2):152−156.

    LI Yingchen, LI Lei, WANG Xingda, et al. Study on the extraction process optimization and the activity of procyandines of highland barley[J]. West China Journal of Pharmaceutical Sciences, 2018, 33(2): 152-156.
    [28]
    LI X H, GAO Z L, GAO H Q, et al. Nephrin loss is reduced by grape seed proanthocyanidins in the experimental diabetic nephropathy rat model[J]. Molecular Medicine Reports,2017,16(6):122−158. doi: 10.3892/mmr.2017.7837
    [29]
    浦娜娜, 王成忠. 响应面法优化白刺果原花青素的提取方法[J]. 齐鲁工业大学学报,2018,32(6):39−44. [PU Nana, WANG Chengzhong. Optimization of extraction method of proanthocyanidins from Nitraria by response surface methodology[J]. Journal of Qilu University of Technology,2018,32(6):39−44.

    PU Nana, WANG Chengzhong. Optimization of extraction method of proanthocyanidins from Nitraria by response surface methodology[J]. Journal of Qilu University of Technology, 2018, 32(6): 39-44.
    [30]
    王海波, 关玉嵩, 徐飞. 响应面法优化宁夏‘赤霞珠’皮渣中原花青素提取工艺[J]. 江汉大学学报(自然科学版),2020,48(4):54−63. [WANG Haibo, GUAN Yusong, XU Fei. Optimization of extraction process of proanthocyanidins from ‘cabernet sauvignon’residue of ningxia by response surface methodology[J]. Journal of Jianghan University (Natural Science Edition),2020,48(4):54−63.

    WANG Haibo, GUAN Yusong, XU Fei. Optimization of extraction process of proanthocyanidins from ‘cabernet sauvignon’residue of ningxia by response surface methodology[J]. Journal of Jianghan University (Natural Science Edition), 2020, 48(4): 54-63.
    [31]
    CHEN F L, DU X Q, ZU Y G, et al. Microwave-assisted method for distillation and dual extraction in obtaining essential oil, proantho-cyanidins and polysaccharides by one-pot process from Cinnamomi Cortex[J]. Separation and Purification Technology,2016,164:1−11. doi: 10.1016/j.seppur.2016.03.018
    [32]
    褚仕超, 张宏, 邓莉, 等. 蚕豆皮原花青素纯化工艺优化[J]. 食品科技,2013,38(9):174−178,184. [CHU Shichao, ZHANG Hong, DENG Li, et al. Optimization purifi cation of proanthocyanidins from faba bean episperm[J]. Food Science And Technology,2013,38(9):174−178,184.

    CHU Shichao, ZHANG Hong, DENG Li, et al. Optimization purifi cation of proanthocyanidins from faba bean episperm[J]. Food Science And Technology, 2013, 38(9): 174-178, 184.
    [33]
    滕飞, 李丽, 皮子凤. 黑果腺肋花楸原花青素分离纯化工艺研究[J]. 长春师范大学学报,2019,38(4):67−72. [TENG Fei, LI Li, PI Zifeng. Study on extraction process and purification conditions of proanthocyanidins from Aronia melanocarpa Elliot[J]. Journal of Changchun Normal University,2019,38(4):67−72.

    TENG Fei, LI Li, PI Zifeng. Study on extraction process and purification conditions of proanthocyanidins from Aronia melanocarpa Elliot[J]. Journal of Changchun Normal University, 2019, 38(4): 67-72.
    [34]
    吕筱, 郑天元, 韦新月, 等. 花生红衣中原花青素的提取工艺与活性研究[J]. 农产品加工,2021(9):27−31. [LYU Xiao, ZHENG Tianyuan, WEI Xinyue, et al. Study on the extraction process and activity of proanthocyanidins from peanut red coat[J]. Farm Products Processing,2021(9):27−31.

    LV Xiao, ZHENG Tianyuan, WEI Xinyue1, et al. Study on the extraction process and activity of proanthocyanidins from peanut red coat[J]. Farm Products Processing, 2021(9): 27-31.
    [35]
    浦娜娜. 原花青素的提取、纯化及抗氧化活性研究[D]. 济南: 齐鲁工业大学, 2019.

    PU Nana. Study of extraction, purification and antioxidant activity of proanthocyanidins from Nitraria[D]. Jinan: Qilu University of Technology, 2019.
    [36]
    孙雪婷, 蒋玉蓉, 袁俊杰, 等. 响应面法优化提取藜麦种子黄酮及抗氧化活性[J]. 中国食品学报,2017,17(3):127−135. [SUN Xueting, JIANG Yurong, YUAN Junjie, et al. Optimization of extraction technology of flavonoids from Quinoa seeds by response surface methodology and its antioxidant activities[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(3):127−135.

    SUN Xueting, JIANG Yurong, YUAN Junjie, et al. Optimization of extraction technology of flavonoids from Quinoa seeds by response surface methodology and its antioxidant activities[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(3)127-135.
  • Related Articles

    [1]LI Mengyang, CHE Xiaoxue, SUN Qingshen. Purification, Characterization and Antibacterial Mechanism of Plantaricin 2-1[J]. Science and Technology of Food Industry, 2025, 46(4): 136-146. DOI: 10.13386/j.issn1002-0306.2024030258
    [2]ZHANG Jie, DANG Bin, YANG Xijuan. Research Progress on Physiological Activity, Antibacterial Mechanism of Plant Polyphenols and Its Application in Food Preservation[J]. Science and Technology of Food Industry, 2022, 43(24): 460-468. DOI: 10.13386/j.issn1002-0306.2022010070
    [3]ZENG Yao-ying, SHAO Xiao-lu, CHENG Shu-jun, YU Qian. Combined Antibacterial Effect and Mechanism of Liangguoan and Garlic Oil[J]. Science and Technology of Food Industry, 2020, 41(10): 112-117. DOI: 10.13386/j.issn1002-0306.2020.10.019
    [4]SONG Yue, LI Bai-liang, LI Na, YUE Ying-xue, WANG Na-na, CHEN Zi-yu, HUO Gui-cheng, GUO Ling. Screening and Identification of Lactic Acid Bacteria for Inhibiting Bovine Mastitis and Preliminary Study of Antibacterial Mechanism[J]. Science and Technology of Food Industry, 2019, 40(20): 120-126. DOI: 10.13386/j.issn1002-0306.2019.20.020
    [5]WANG Cui, LI Ping, ZHU Hua-ping, LI Chao, YANG Qiang-qiang, SUI Bao-bin. Preliminary Study on Antibacterial Activity of Benzyl Isothiocyanate and Its Analogues[J]. Science and Technology of Food Industry, 2019, 40(16): 84-89. DOI: 10.13386/j.issn1002-0306.2019.16.014
    [6]SHU Hui-zhen, TANG Zhi-ling, LIU Xue, CHEN Wei-jun, CHEN Hai-ming, HU Yue-ying, CHEN Wen-xue. Antibacterial Activity and Mechanism of Limonene against Pseudomonas fluorescens[J]. Science and Technology of Food Industry, 2019, 40(12): 134-140. DOI: 10.13386/j.issn1002-0306.2019.12.022
    [7]LIU Xue, WANG Jing-nan, CHEN Wen-xue, CHEN Rong-hao, ZHANG Guan-fei. Antibacterial activity and mechanism of limonene against Pseudomonas aeruginosa[J]. Science and Technology of Food Industry, 2018, 39(7): 1-5. DOI: 10.13386/j.issn1002-0306.2018.07.001
    [8]LIANG Ying, ZHU Jun-ya, ZHANG Gong-liang, GAN Wei-qi, SUN Li-ming, HOU Hong-man. Antibacterial activity of oxygen-containing sulfide flavors against some common pathogenic bacteria in vitro[J]. Science and Technology of Food Industry, 2015, (18): 108-112. DOI: 10.13386/j.issn1002-0306.2015.18.013
    [9]REN Xian-wei, WEI Xiao-lu, HUANG Xin, LIU Li, FENG Yue, XIA Xue-shan. Antibacterial activity and mechanism of walnut green husk ' extract[J]. Science and Technology of Food Industry, 2015, (18): 93-98. DOI: 10.13386/j.issn1002-0306.2015.18.010
    [10]ZHENG Cui-ping, QUAN Mei-ping, KANG Li-na, MA Ting-ting, ZHAO Pei, TIAN Cheng-rui. Study on the antibacterial activity and its mechanism of acetone extract from Rubia Cordifolia[J]. Science and Technology of Food Industry, 2015, (09): 116-119. DOI: 10.13386/j.issn1002-0306.2015.09.016
  • Cited by

    Periodical cited type(14)

    1. 杨永学,孙晓璐. 基于GC-IMS技术的精酿龙井茶啤酒酿造过程中挥发性风味物质分析. 延边大学农学学报. 2025(01): 87-93 .
    2. 韦金雁,卢志金,韩佳临,刘兴胥,马婷婷. 不同基酒添加对百香果增味精酿啤酒风味影响的对比研究. 食品安全导刊. 2025(09): 109-111+128 .
    3. 何猛超,邬子璇,西玉玲,张德中,陈玉莲,李坤,井会涵,王鸿博,刘海坡,陈杉彬,韩兴林. 通过外源添加芽孢杆菌提升北方地区高温大曲的品质. 食品工业科技. 2024(01): 145-154 . 本站查看
    4. 黄书源,张立强,冉茂芳,魏阳,涂荣坤,杨平,王松涛,宋萍,沈才洪. 不同原料添加提升曲药酱香风味的研究. 中国酿造. 2024(05): 41-46 .
    5. 刘倩,白艳龙,贾建华,肖琳,王晓娟,周小龙,邱然. 基于GC-MS和GC-IMS技术比较不同种类麦芽的挥发性物质. 食品工业科技. 2024(14): 215-223 . 本站查看
    6. 邓仕彬,蔡伊萍,林坍霖,李思瑶. 果酿啤酒的酿造工艺和品质研究进展. 中国酿造. 2023(02): 16-21 .
    7. 宋艺君,庞来祥,袁筱,庞柏均,郭涛. GC-IMS法比较不同酒龄猕猴桃酒特征香气物质差异. 食品与生物技术学报. 2023(02): 58-65 .
    8. 罗跃中,匡燕,李忠英,姚琦. 响应面法优化黄桃精酿啤酒发酵工艺. 武汉轻工大学学报. 2023(06): 99-105 .
    9. 田林平,张琪,李瑞,任小林. 正丁醇处理对‘粉红女士’苹果贮藏期间挥发性物质的影响. 食品工业科技. 2022(18): 337-345 . 本站查看
    10. 邬子璇,杨洋,李美吟,陈礼嘉,许驰,张春艳,林园,王健. 气相色谱-离子迁移谱法结合多元统计学分析不同陈酿时间白兰地的挥发性香气成分差异. 食品安全质量检测学报. 2022(18): 5795-5803 .
    11. 龚霄,陈廷慧,胡小军,范威威,李亚军,赵新强. 基于GC-IMS技术的百香果果啤风味分析. 食品与机械. 2022(11): 46-52+75 .
    12. 方灵,孔宝玉,韦航,颜孙安,刘文静,司瑞茹,史梦竹,梁启富,任丽花,傅建炜. 不同发育阶段黄金百香果挥发性成分差异性研究. 果树学报. 2022(12): 2376-2389 .
    13. 李林波,杭金龙,张士双,杨天佑,王宝石,张明霞. 精酿果啤的酿造工艺及风味影响因素的研究进展. 食品与发酵工业. 2022(24): 337-345 .
    14. 涂京霞,杨青,王玉海,张智皓,陈明. 果酿啤酒酿造工艺与品质的研究. 中外酒业. 2022(21): 28-33 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return