Abstract:
In order to improve the quality stability of frozen reconstructed squid mince, the influence of three additions at various concentrations, namely trehalose (2%, 4%, 6%), lactitol (2%, 4%, 6%), and sodium lactate (2%, 3%, 4%) on the cryoprotective effect of squid mince during 5-month frozen storage was evaluated using Peru squid as raw materials. Gel strength, water holding capacity, Ca
2+-ATPase activity, water distribution, and microstructures were monitored. The results showed that trehalose, lactitol, and sodium lactate could effectively improve the gel strength and water-holding capacity with increasing addition amounts (
P<0.05). After 5-month frozen storage, the Ca
2+-ATPase activity of quid mince added with 6% trehalose, 6% lactitol and 4% sodium lactate was 0.28, 0.26 and 0.30 μmol Pi/(mg prot·h) respectively, significantly higher than the control group 0.17 μmol Pi/(mg prot·h) (
P<0.05), indicating the denaturation of myofibrillar protein of squid mince was delayed. SEM results showed that the microstructures of squid mince added with 6% trehalose and 4% sodium lactate were more compact with a well-kept gel network matrix compared with the control group and mince added with lactitol during frozen storage. Combined with sensory evaluation, 6% trehalose could enhance the mouthfeel and overall acceptance of squid mince. Overall, 6% trehalose could effectively delay the quality change of squid sliders during frozen storage, and would provide a theoretical foundation for the utilization of Peru squid and its frozen prepared products.