• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
梁欢, 卢金清, 李肖爽, 戴艺, 张锐, 郭胜男. 可可粉色谱指纹图谱的构建及其质量控制中的应用[J]. 食品工业科技, 2014, (05): 306-308. DOI: 10.13386/j.issn1002-0306.2014.05.055
引用本文: 梁欢, 卢金清, 李肖爽, 戴艺, 张锐, 郭胜男. 可可粉色谱指纹图谱的构建及其质量控制中的应用[J]. 食品工业科技, 2014, (05): 306-308. DOI: 10.13386/j.issn1002-0306.2014.05.055
LIANG Huan, LU Jin-qing, LI Xiao-shuang, DAI Yi, ZHANG Rui, GUO Sheng-nan. Chromatographic fingerprint and its application to quality control of Cocoa powder[J]. Science and Technology of Food Industry, 2014, (05): 306-308. DOI: 10.13386/j.issn1002-0306.2014.05.055
Citation: LIANG Huan, LU Jin-qing, LI Xiao-shuang, DAI Yi, ZHANG Rui, GUO Sheng-nan. Chromatographic fingerprint and its application to quality control of Cocoa powder[J]. Science and Technology of Food Industry, 2014, (05): 306-308. DOI: 10.13386/j.issn1002-0306.2014.05.055

可可粉色谱指纹图谱的构建及其质量控制中的应用

Chromatographic fingerprint and its application to quality control of Cocoa powder

  • 摘要: 目的:建立可可粉高效液相指纹图谱。方法:采用RP-HPLC法。色谱柱为Agilent ZORBAX Extend-C18(250mm×4.6mm,5μm);以乙腈-0.05%磷酸缓冲盐溶液为流动相梯度洗脱;柱温:30℃;流速:0.8mL/min;检测波长:210nm;进样量:10μL。测定10批不同来源可可粉图谱,并运用相似度分析、系统聚类分析对可可粉进行分类研究。结果:建立了精密度、稳定性和重复性均良好的HPLC指纹图谱,确立了5个共有峰,指认了其中3个色谱峰,并建立了可可粉指纹图谱共有模式,测得各批次样品指纹图谱相似度均在0.90以上,系统聚类分析将10批可可粉分为3类。结论:该方法简便易行、准确、重现性好,可以作为可可粉质量评价的重要依据。 

     

    Abstract: Objective: To establish the chromatographic fingerprint analysis for the quality control of Cocoapowder.Methods: RP-HPLC was applied to establish the chromatographic fingerprint.The separation wasperformed on a Agilent ZORBAX Extend-C18column ( 250mm × 4.6mm, 5μm) with a gradient elution composed of acetonitrile and0.05% phosphate buffer solution. The column temperature was set at 30℃ and the flowrate was 0.8mL /min. The detective wavelength was at 210nm.10 batches of cocoa powder mapping were determined.The similarity analysis and cluster analysis were used to classify the cocoa powder. Results: With high precision, stability and good repeatability, the HPLC fingerprint was established. Five characteristic peaks were established in the fingerprint, three of them were identified.The mutual model of Cocoa powder was established and the similaritiy was more than0.90.10 batches of Cocoa powder were divided into three categories by system clustering analysis.Conclusion: The method is simple and accurate with good reproducibility.It can be used for the quality control of Cocoa powder.

     

/

返回文章
返回