Research Progress of Preparation and Application of Probiotic Microencapsulation in Food
-
摘要: 益生菌对人体健康有益而被广泛应用于食品领域,但其易受温度、氧气、湿度、压力、胃酸和胆汁盐等不良环境因素影响。为使益生菌在加工、储藏、消化过程中保持高存活率,人们利用不同的微胶囊技术对益生菌进行包埋和保护。益生菌微胶囊技术通过创建一种物理屏障来提高益生菌对不良环境的抗性力,减少保护基质中益生菌的损伤,从而使其到达目标部位顺利释放并发挥作用。文章概述了益生菌的起源、种类及益生功效,重点总结了益生菌微胶囊常用制备方法的基本原理及优缺点,包括挤压法、乳化法、喷雾干燥法、冷冻干燥法、喷雾冷却法、复凝聚法、静电纺丝、电喷雾和撞击气溶胶法,进而重点讨论了益生菌微胶囊技术在乳制品、肉制品、非乳饮料及焙烤制品等食品中的应用优势和可能性。虽然众多研究进行体外模拟消化,但仍存在一定局限性,对于现有的问题,未来仍然需要通过扩大包埋方法、开展体内实验、建立系统性数据库等方法来满足益生菌食品的工业化生产需求,以为开发新型益生菌食品提供理论借鉴和参考。Abstract: Probiotics are widely used in the food field because they are beneficial to human health, while they are susceptible to adverse environmental factors such as temperature, oxygen, humidity, pressure, stomach acid and bile salts. In order to maintain high survival rate of probiotics during processing, storage and digestion, different microencapsulation technologies have been used for encapsulation and protection of probiotics. Probiotic microencapsulation technology can improve the resistance of probiotics to adverse environment by creating a physical barrier, and reduce the damage of probiotics in the protective matrix, so that they can reach the target site at full potency. The review article summarizes the source, type and efficacy of probiotics, and mainly summarizes the fundamental principles, advantages and disadvantages of the common probiotic microencapsulation technologies, including extrusion, emulsification, spray drying, freeze drying, spray chilling, complex coacervation, electrospinning, electrospraying and impinging aerosols. Furthermore, an overview of the application advantages and possibilities of probiotic microencapsulation technologies in dairy products, meat products, non-milk beverages and baked products are discussed. Although many studies in vitro digestion, there are still some limitations. As for the existing problems, it is necessary to expand the microencapsulation technologies, carry out in vivo experiments, and establish a systematic database to meet the industrial production needs of probiotic food. It provides theoretical reference for developing new probiotic food.
-
Key words:
- probiotics /
- microencapsulation /
- food /
- application
-
表 1 不同类型的益生菌微胶囊技术及特点
Table 1. Technologies and characteristics of different types of probiotic microcapsules
益生菌微胶囊技术 适用壁材 特点 参考文献 挤压法 海藻酸盐、卡拉胶、壳聚糖、黄原胶、明胶、果胶、乳清
蛋白、菊粉• 成本低廉、操作简单、条件温和、尺径均匀
• 生产量小、尺径较大[17-21] 乳化法 海藻酸盐、卡拉胶、壳聚糖、黄原胶、明胶、果胶、乳清
蛋白、羧甲基纤维素钠、阿拉伯胶• 生产量大、尺径较小
• 油相残留、尺径分布不匀[22-24] 喷雾干燥法 麦芽糊精、脱脂乳粉、乳清蛋白、大豆分离蛋白、明胶、
果胶、阿拉伯胶、海藻酸盐、低聚果糖、乳清粉、菊粉• 尺径可控、成本低廉、生产量大、复水能力强
• 产品稳定性差[25-26] 冷冻干燥法 黄原胶、卡拉胶、海藻酸盐、果糖、麦芽糊精、大豆分
离蛋白、乳糖、甘露糖、山梨醇• 产品稳定性好、适用于热敏性物质包埋
• 成本昂贵、操作复杂、产品表皮皱缩[27-28] 喷雾冷却法 植物脂肪 • 尺径可控、成本低廉
• 包埋效率低[29] 复凝聚法 阿拉伯胶、果胶、海藻酸盐、黄原胶、卡拉胶、羧甲基纤
维素钠、乳清蛋白、明胶、酪蛋白、β-乳球蛋白• 生产量大
• 工艺复杂、成本昂贵[30-31] 静电纺丝 乳清蛋白、大豆分离蛋白、明胶、玉米醇溶蛋白、酪蛋
白、淀粉、纤维素、果胶、瓜尔胶、壳聚糖、海藻酸盐、
卡拉胶、黄原胶、葡聚糖• 方便快捷、经济高效、条件温和、适应性强 [32-34] 电喷雾 撞击气溶胶法 海藻酸钠 • 连续生产、生产量大、产品尺径小 [35] 表 2 益生菌微胶囊在食品中的应用
Table 2. Application of probiotic microcapsules in food
菌种 菌株 微胶囊技术 包埋材料 包埋率 食品基质 参考 动物双歧杆菌乳亚种 Bb-12 挤压法 海藻酸钠、菊粉 91.00% 酸羊奶 [64] 喷雾干燥法 海藻酸钠、黄原胶、β-环糊精 95.00% 意大利腊肠 [73] 乳化法 脱脂乳粉、大豆卵磷脂 - 草莓苹果混合汁、菠萝汁 [84] 嗜酸乳杆菌 挤压法 乳清蛋白、黄原胶 99.80% 酸奶 [65] ATCC-4356 挤压法 海藻酸钠、卡拉胶 98.00% 冰激淋 [66] LA02-ID-1688 挤压法 海藻酸钙 89.40% 巧克力谷物棒 [92] LA-5 乳化法 海藻酸钠、鱼明胶 - 面包 [94] 鼠李糖乳酪杆菌 撞击气溶胶法 海藻酸钠 - 低脂奶油干酪 [67] ATCC-53103 喷雾干燥法 分离乳清蛋白、Huauzontle改性淀粉 - 即饮绿茶 [81] GG 乳化法 海藻酸钠 - 苹果汁 [83] GG 电喷雾法 海藻酸钠、二氧化硅 - 啤酒 [86] 植物乳植杆菌 ATCC-8014 复凝聚法 乳清蛋白和阿拉伯胶 95.80% 白奶酪 [68] BG-112 喷雾干燥法 丙烯酸酯S100 80.60% 意大利腊肠 [74] 乳化法 海藻酸钠 - 干发酵香肠 [75] 副干酪乳酪杆菌 6062 乳化法 海藻酸钠 - 酸奶 [69] 罗伊氏粘液乳杆菌 挤压法、乳化法 海藻酸钠 - 发酵香肠 [76] 格氏乳杆菌 ATCC-19992 乳化法 海藻酸钠 - 苹果汁 [82] 乳酸乳球菌 ABRIINW-N19 挤压法 海藻酸钠、低聚果糖、菊粉 98.40% 橙汁 [85] 戊糖片球菌 ARGMG-12 挤压法 海藻酸钠 - 气泡橙汁 [88] 干酪乳酪杆菌 ATCC-39392 乳化法 海藻酸钠、抗性淀粉 - 奶油蛋糕 [93] 清酒广布乳杆菌、肠膜明串珠菌 挤压法 海藻酸钠 80.05% 野味香肠 [77] 嗜酸乳杆菌、动物双歧杆菌乳亚种 喷雾冷却法 植物脂肪 - 谷物棒 [91] -
[1] ZHANG X, WANG X Z, ZHANG P. Probiotics regulate gut microbiota: An effective method to improve immunity[J]. Molecules,2021,26(19):6076. doi: 10.3390/molecules26196076 [2] 阿热爱·巴合提, 谭春明, 李平兰. 益生菌的分类及其多领域应用研究现状[J]. 生物加工过程,2022,20(1):88−94. [AREAI B, TAN C M, LI P L. Classification of probiotic bacteria and their current research status in multiple fields of application[J]. Chinese Journal of Bioprocess Engineering,2022,20(1):88−94. doi: 10.3969/j.issn.1672-3678.2022.01.012 [3] SHARMA R, MOKHTARI S, JAFARI S M, et al. Barley-based probiotic food mixture: Health effects and future prospects[J]. Critical Reviews in Food Science and Nutrition,2021,1:104287. [4] SIPAILIENE A, PETRAITRAITYTE S. Encapsulation of probiotics: Proper selection of the probiotic strain and the influence of encapsulation technology and materials on the viability of encapsulated microorganisms[J]. Probiotics & Antimicrobial Proteins,2018,10:1−10. [5] WANG Y, JIANG Y, DENG Y, et al. Probiotic supplements: Hope or hype?[J]. Frontiers in Microbiology,2020,11:160. doi: 10.3389/fmicb.2020.00160 [6] FRAKOLAKI G, KATSOULI M, GIANNOU V, et al. Novel encapsulation approach for Bifidobacterium subsp. lactis (BB-12) viability enhancement through its incorporation into a double emulsion prior to the extrusion process[J]. LWT-Food Science & Technology,2020,130:109671. [7] ZHU Y, WANG Z, BAI L, et al. Biomaterial-based encapsulated probiotics for biomedical applications: Current status and future perspectives[J]. Materials & Design,2021,210:110018. [8] BARAJAS A P, GONZALEZ A M, ESPINOSA A H. Recent advances in probiotic encapsulation to improve viability under storage and gastrointestinal conditions and their impact on functional food formulation[J]. Food Reviews International,2021:1−22. [9] MITROPOULOU G, NEDOVIC V, GOYAL A, et al. Immobilization technologies in probiotic food production[J]. Journal of Nutrition and Metabolism,2013,2013:716861. [10] International Scientific Association for Probiotics and Prebiotics (ISAPP). Probiotics[EB/OL]. (2020)[2022]. https://isappscience.org/for-scientists/resources/probiotics/. [11] 罗洒, 赵炜, 李诗瑶, 等. 快速发展多元化的益生菌市场[J]. 食品科技,2021,46(8):38−45. [LUO S, ZHAO W, LI S Y, et al. Rapid development of a diversified probiotic market[J]. Food Science and Technology,2021,46(8):38−45. doi: 10.13684/j.cnki.spkj.2021.08.007 [12] 林炫财, 林杨凡, 何璇昱, 等. 益生菌在胃肠道疾病中的应用[J]. 现代消化及介入诊疗,2021,26(5):643−646. [LIN X C, LIN Y F, HE X Y, et al. Application of probiotics in gastrointestinal diseases[J]. Modern Digestion & Intervention,2021,26(5):643−646. doi: 10.3969/j.issn.1672-2159.2021.05.023 [13] LIU Q, YU Z, TIAN F, et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier[J]. Microbial Cell Factories,2020,19(1):23. doi: 10.1186/s12934-020-1289-4 [14] LIU G, HUANG Y, REIS F S, et al. Impact of nutritional and environmental factors on inflammation, oxidative stress, and the microbiome[J]. Biomed Research International,2019,2019:5716241. [15] GOMEZ M L G, MORFIN R C, PEREZ M R, et al. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion[J]. LWT-Food Science & Technology,2016,69:438−446. [16] HII Y S, LAW M C, SAN C Y. Experimental and numerical study of the impinging aerosols method for the micro-encapsulation of phosphate solubilising microorganisms (PSMs)[J]. Biochemical Engineering Journal,2021,174:108118. doi: 10.1016/j.bej.2021.108118 [17] PRASANNA P H P, CHARALAMPOPOULOS D. Encapsulation of Bifidobacterium longum in alginate-dairy matrices and survival in simulated gastrointestinal conditions, refrigeration, cow milk and goat milk[J]. Food Bioscience,2018,21:72−79. doi: 10.1016/j.fbio.2017.12.002 [18] QI X, SIMSEK S, OHM J B, et al. Viability of Lactobacillus rhamnosus GG microencapsulated in alginate/chitosan hydrogel particles during storage and simulated gastrointestinal digestion: Role of chitosan molecular weight[J]. Soft Matter,2020,16(7):1877−1887. doi: 10.1039/C9SM02387A [19] AZAM M, SAEED M, AHMAD T, et al. Characterization of biopolymeric encapsulation system for improved survival of Lactobacillus brevis[J]. Food Measure,2022,16:2292−2299. doi: 10.1007/s11694-022-01334-0 [20] GANDOMI H, ABBASZADEH S, MISAGHI A, et al. Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions[J]. LWT-Food Science & Technology,2016,69:365−371. [21] TA L P, BUJNA E, ANTAL O, et al. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain[J]. International Journal of Biological Macromolecules,2021,183:1136−1144. doi: 10.1016/j.ijbiomac.2021.04.170 [22] OBEROI K, TOLUN A, ALTINTAS Z, et al. Effect of alginate-microencapsulated hydrogels on the survival of Lactobacillus rhamnosus under simulated gastrointestinal conditions[J]. Foods,2021,10(9):1999. doi: 10.3390/foods10091999 [23] SINGH P, MEDRONHO B, MIGUEL M G, et al. On the encapsulation and viability of probiotic bacteria in edible carboxymethyl cellulose-gelatin water-in-water emulsions[J]. Food Hydrocolloids,2018,75:41−50. doi: 10.1016/j.foodhyd.2017.09.014 [24] SILVA M, CHANDRAPALA J. Ultrasonic emulsification of milk proteins stabilized primary and double emulsions: A review[J]. Food Reviews International,2021,37(6):1−23. [25] VIVEK K, MISHRA S, PRADHAN R C. Characterization of spray dried probiotic Sohiong fruit powder with Lactobacillus plantarum[J]. LWT-Food Science & Technology,2020,117:108699. [26] ANDRADE D P, RAMOS C L, BOTREL D A, et al. Stability of microencapsulated lactic acid bacteria under acidic and bile juice conditions[J]. International Journal of Food Science & Technology,2019,54:2355−2362. [27] MIRTIC J, RIJAVEC T, ZUPANCIC S, et al. Development of probiotic-loaded microcapsules for local delivery: Physical properties, cell release and growth[J]. European Journal of Pharmaceutical Sciences,2018,121:178−187. doi: 10.1016/j.ejps.2018.05.022 [28] CHEN H Y, LI X Y, LIU B J, et al. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions[J]. Journal of Functional Foods,2017,29:248−255. doi: 10.1016/j.jff.2016.12.015 [29] ARSLAN T S, ERBAS M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling[J]. LWT-Food Science & Technology,2017,81:160−169. [30] BOSNEA L A, MOSCHAKIS T, NIGAM P S, et al. Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability[J]. LWT-Food Science & Technology,2017,77:282−289. [31] ERATTE D, DOWLING K, BARROW C J, et al. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review[J]. Trends in Food Science & Technology,2018,71:121−131. [32] ZHANG Y, LI B, HAN L. Microencapsulation of Lactobacillus acidophilus KLDS 1.0391 by electrostatic spray increases viability after in vitro digestibility[J]. Journal of Food Process Engineering,2017,40(2):e12416. doi: 10.1111/jfpe.12416 [33] MOJAVERI S J, HOSSEINI S F, GHARSALLAOUI A. Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats[J]. Carbohydrate Polymers,2020,241:116278. doi: 10.1016/j.carbpol.2020.116278 [34] GHORANI B, TUCKER N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology[J]. Food Hydrocolloids,2015,51:227−240. doi: 10.1016/j.foodhyd.2015.05.024 [35] SOHAIL A, TURNER M S, COOMBES A, et al. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method[J]. International Journal of Food Microbiology,2011,145(1):162−168. doi: 10.1016/j.ijfoodmicro.2010.12.007 [36] BENNACEF C, DESOBRY B S, PROBST L, et al. Advances on alginate use for spherification to encapsulate biomolecules[J]. Food Hydrocolloids,2021,118:106782. doi: 10.1016/j.foodhyd.2021.106782 [37] SANTOS M A S, MACHADO M T C. Coated alginate-chitosan particles to improve the stability of probiotic yeast[J]. International Journal of Food Science & Technology,2021,56(5):2122−2131. [38] QAZIYANI S D, POURFARZAD A, GHEIBI S, et al. Effect of encapsulation and wall material on the probiotic survival and physicochemical properties of synbiotic chewing gum: Study with univariate and multivariate analyses[J]. Heliyon,2019,5(7):e02144. doi: 10.1016/j.heliyon.2019.e02144 [39] 蔡文静, 孙嘉蕾, 韩雪. 益生菌微胶囊的研究进展[J]. 食品科技,2022,47(2):36−42. [[CAI W J, SUN J L, HAN X. Research progress of probiotic microcapsules[J]. Food Science and Technology,2022,47(2):36−42. doi: 10.3969/j.issn.1005-9989.2022.2.spkj202202006 [40] FANGMEIER M, LEHN D N, MACIEL M J, et al. Encapsulation of bioactive ingredients by extrusion with vibrating technology: Advantages and challenges[J]. Food and Bioprocess Technology,2019,12(9):1472−1486. doi: 10.1007/s11947-019-02326-7 [41] FRAKOLAKI G, GIANNOU V, KEKOS D, et al. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods[J]. Critical Reviews in Food Science and Nutrition,2020,61(9):1515−1536. [42] LOYEAU P A, SPOTTI M J, VINDEROLA G, et al. Encapsulation of potential probiotic and canola oil through emulsification and ionotropic gelation, using protein/polysaccharides Maillard conjugates as emulsifiers[J]. LWT-Food Science & Technology,2021,150:111980. [43] MARTINS E, PONCELET D, RODRIGUES R C, et al. Oil encapsulation in core-shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions[J]. Journal of Microencapsulation,2017,34(6):522−534. doi: 10.1080/02652048.2017.1365963 [44] 蒋苏颖, 杨亚强, 黄叶, 等. 植物乳杆菌CICC 20270微胶囊的制备及其特性[J]. 食品工业科技,2018,39(21):29−34. [JIANG S Y, YANG Y Q, HUANG Y, et al. Preparation and properties of microcapsules of Lactobacillus plantarum CICC 20270[J]. Science and Technology of Food Industry,2018,39(21):29−34. [45] MIS S K, JIANG N, YUAN M, et al. The effect of the ultra-high-pressure homogenization of protein encapsulants on the survivability of probiotic cultures after spray drying[J]. Foods,2019,8(12):689. doi: 10.3390/foods8120689 [46] 陶萄, 侯丹平, 尹肖寒, 等. 喷雾干燥技术在益生菌微胶囊制品中的应用研究进展[J]. 食品工业,2019,40(4):271−275. [TAO W, HOU D P, YIN X H, et al. Research progress in the application of spray drying technology in probiotic microencapsulated products[J]. The Food Industry,2019,40(4):271−275. [47] RAJAM R, SUBRAMANIAN P. Encapsulation of probiotics: Past, present and future[J]. Beni-Suef University Journal of Basic and Applied Sciences,2022,11:46. doi: 10.1186/s43088-022-00228-w [48] FARAHMANDI K, RAJAB S, TABANDEH F, et al. Efficient spray-drying of Lactobacillus rhamnosus PTCC 1637 using total CFU yield as the decision factor[J]. Food Bioscience,2020,40:100816. [49] AREPALLY D, GOSWAMI T K. Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying[J]. LWT-Food Science & Technology,2019,99:583−593. [50] XAVIER D S D, CASAZZA A A, ALIAKBARIANl B, et al. Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying[J]. LWT-Food Science & Technology,2019,99:404−410. [51] LEYLAK C, OZDEMIR K S, GURAKAN G C, et al. Optimisation of spray drying parameters for Lactobacillus acidophilus encapsulation in whey and gum arabic: Its application in yoghurt[J]. International Dairy Journal,2021,112:104865. doi: 10.1016/j.idairyj.2020.104865 [52] VANISKI R, SILVA S C, SILVA B R A, et al. Improvement of Lactobacillus acidophilus La-5 microencapsulation viability by spray-drying with rice bran protein and maltodextrin[J]. Journal of Food Processing and Preservation,2021,45(4):e15364. [53] BARRO N P R, SILVA L M D, HASSEMER G D S, et al. Microencapsulation of probiotic Lactobacillus helveticuswith different wall materials by spray drying[J]. Biointerface Research in Applied Chemistry,2021,11(4):11221−11232. [54] 陈胜杰, 高翔, 袁戎宇. 真空冷冻干燥法制备益生菌粉的冻干保护剂配方优化[J]. 食品工业科技,2021,42(1):182−187. [CHEN S J, GAO X, YUAN R Y. Optimization of lyophilized protective agent formulation for the preparation of probiotic powder by vacuum freeze-drying method[J]. Science and Technology of Food Industry,2021,42(1):182−187. doi: 10.13386/j.issn1002-0306.2020020317 [55] BETORET E, BETORET N, CALABUIG J L, et al. Effect of drying process, encapsulation, and storage on the survival rates and gastrointestinal resistance of L. salivarius spp. salivarius included into a fruit matrix[J]. Microorganisms,2020,8:654. doi: 10.3390/microorganisms8050654 [56] MOTALEBI M Z, REZAZADEH B M, ALIZADEH K M, et al. Microencapsulation of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12 in pectin and sodium alginate: A comparative study on viability, stability, and structure[J]. Food Science & Nutrition,2021,9(9):5103−5111. [57] PREMJIT Y, MITRA J. Optimization of electrospray-assisted microencapsulation of probiotics (Leuconostoc lactis) in soy protein isolate-oil particles using Box-Behnken experimental design[J]. Food Bioprocess Technology,2021,14:1712−1729. doi: 10.1007/s11947-021-02670-7 [58] 王丽红, 杨辉, 孔阳, 等. 3种益生菌转化纳米硒冻干菌粉工艺研究与形态表征[J]. 食品科技,2020,45(4):1−6. [WANG L H, YANG H, KONG Y, et al. Process study and morphological characterization of three probiotic transformed nanoselenium lyophilized bacterial powder[J]. Food Science and Technology,2020,45(4):1−6. doi: 10.13684/j.cnki.spkj.2020.04.001 [59] 刘畅, 张心明. 电流体动力学应用进展[J]. 工业技术创新,2016,3(5):1047−1051. [[LIU C, ZHANG X M. Advances in electrohydrodynamic applications[J]. Industrial Technology Innovation,2016,3(5):1047−1051. doi: 10.14103/j.issn.2095-8412.2016.05.060 [60] FUSCO V, FANELLI F, CHIEFFI D. Authenticity of probiotic foods and dietary supplements: A pivotal issue to address[J]. Critical Reviews in Food Science and Nutrition,2021,12:1−18. [61] 章志超, 吴鑫. 益生菌的功能特性及其在乳制品中的应用[J]. 现代食品,2018,3:7−10. [ZHANG Z C, WU X. Functional properties of probiotics and their applications in dairy products[J]. Modern Food,2018,3:7−10. doi: 10.16736/j.cnki.cn41-1434/ts.2018.03.003 [62] CASSANI L, GOMEZ Z A, SIMAL G J. Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: From food processing and storage to their passage through the gastrointestinal tract[J]. Food Research International,2020,129:108852. doi: 10.1016/j.foodres.2019.108852 [63] MALEKI M, ARIAII P, SHARIFI S M. Fortifying of probiotic yogurt with free and microencapsulated extract of Tragopogon collinus and its effect on the viability of Lactobacillus casei and Lactobacillus plantarum[J]. Food Science & Nutrition,2021,9(7):3436−3448. [64] PRADEEP P P H, CHARALAMPOPOULOS D. Encapsulation in an alginate-goats’ milk-inulin matrix improves survival of probiotic Bifidobacterium in simulated gastrointestinal conditions and goats’ milk yoghurt[J]. International Journal of Dairy Technology,2019,72(1):132−141. doi: 10.1111/1471-0307.12568 [65] KHORSHIDI M, HESHMATI A, TAHERI M, et al. Effect of whey protein-and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt[J]. Food Science & Nutrition,2021,9(7):3942−3953. [66] AFZAAL M, SAEED F, ARSHAD M U, et al. The effect of encapsulation on the stability of probiotic bacteria in ice cream and simulated gastrointestinal conditions[J]. Probiotics and Antimicrobial Proteins,2019,11(4):1348−1354. doi: 10.1007/s12602-018-9485-9 [67] NINGTYAS D W, BHANDARI B, BANSAL N, et al. The viability of probiotic Lactobacillus rhamnosus (non-encapsulated and encapsulated) in functional reduced-fat cream cheese and its textural properties during storage[J]. Food Control,2019,100:8−16. doi: 10.1016/j.foodcont.2018.12.048 [68] SHARIFI S, REZAZAD B, ALIZADEH M, et al. Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese[J]. Food Hydrocolloids,2020,113:106496. [69] LI H, LIU T, YANG J, et al. Effect of a microencapsulated synbiotic product on microbiology, microstructure, textural and rheological properties of stirred yogurt[J]. LWT-Food Science & Technology,2021,152:112302. [70] KHAN M I, ARSHAD M S, ANJUM F M, et al. Meat as a functional food with special reference to probiotic sausages[J]. Food Research International,2011,44(10):3125−3133. doi: 10.1016/j.foodres.2011.07.033 [71] RODRIGUES F J, CEDRAN M F, BICAS J L, et al. Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications-A narrative review[J]. Food Research International,2020,137:109682. doi: 10.1016/j.foodres.2020.109682 [72] 葛芮瑄, 罗玉龙, 剧柠. 传统发酵肉制品中微生物菌群对风味形成的研究进展[J]. 微生物学通报,2022,49(6):2295−2307. [GE R X, LUO Y L, JU N. Progress of research on microflora on flavor formation in traditional fermented meat products[J]. Microbiology China,2022,49(6):2295−2307. doi: 10.13344/j.microbiol.china.210563 [73] GOMES B D O, OLIVEIRA C D M, MARINS A R D, et al. Application of microencapsulated probiotic Bifidobacterium animalis ssp. lactis BB-12 in Italian salami[J]. Journal of Food Processing and Preservation,2021,45(10):e15841. [74] MACHADO V L I, SILVA B R A D, KALSCHNE D L, et al. Functional fermented sausages incorporated with microencapsulated Lactobacillus plantarum BG 112 in Acrycoat S100[J]. LWT-Food Science & Technology,2021,148:111596. [75] PASQUALIN C C, RUIZ C C, HERRERO A M, et al. Effect of encapsulated Lactobacillus plantarum as probiotic on dry‐sausages during chilled storage[J]. International Journal of Food Science & Technology,2020,55(12):3613−3621. [76] MUTHUKUMARASAMY P, HOLLEY R A. Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri[J]. International Journal of Food Microbiology,2006,111(2):164−169. doi: 10.1016/j.ijfoodmicro.2006.04.036 [77] MRKONJIC F M, ZGOMBA M A, HULAK N, et al. The survival rate and efficiency of non-encapsulated and encapsulated native starter cultures to improve the quality of artisanal game meat sausages[J]. Journal of Food Science and Technology,2021,58(2):710−719. doi: 10.1007/s13197-020-04587-z [78] LI S, TAO Y, LI D, et al. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles[J]. Chemosphere,2021,276:130090. doi: 10.1016/j.chemosphere.2021.130090 [79] ZHANG Y, LIU W, WEI Z, et al. Enhancement of functional characteristics of blueberry juice fermented by Lactobacillus plantarum[J]. LWT-Food Science & Technology,2020,139:110590. [80] ROSOLEN M D, BORDINI F W, LUZ G D, et al. Survival of microencapsulated Lactococcus lactis subsp. lactis R7 applied in different food matrices[J]. Applied Biochemistry Biotechnology,2022,194(5):2135−2150. doi: 10.1007/s12010-022-03804-z [81] BARRUETA T H, BUSTOS F M, TOSTADO E C, et al. Encapsulation of probiotics in whey protein isolate and modified huauzontle’s starch: An approach to avoid fermentation and stabilize polyphenol compounds in a ready-to-drink probiotic green tea[J]. LWT-Food Science & Technology,2020,124:109131. [82] VARELA P A, ROMERO C O O, CASTILLO O A G, et al. Encapsulation of Lactobacillus gasseri: Characterization, probiotic survival, in vitro evaluation and viability in apple juice[J]. Foods,2022,11:740. doi: 10.3390/foods11050740 [83] ROMERO C O O, VARELA P A, CASTILLO O A G, et al. Encapsulation of Lacticaseibacillus rhamnosus GG: Probiotic survival, in vitro digestion and viability in apple juice and yogurt[J]. Applied Sciences,2022,12(4):2141. doi: 10.3390/app12042141 [84] SARKA H, KRISTYNA R, KRISTINA B, et al. Fruit juices with probiotics-New type of functional foods[J]. Czech Journal of Food Sciences,2018,36(4):284−288. doi: 10.17221/39/2018-CJFS [85] NAMI Y, LORNEZHAD G, KIANI A, et al. Alginate-persian gum-prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice[J]. LWT-Food Science & Technology,2020,124:109190. [86] HAFFNER F B, PASC A. Freeze-dried alginate-silica microparticles as carriers of probiotic bacteria in apple juice and beer[J]. LWT-Food Science & Technology,2018,91:175−179. [87] HOW Y H, LAI K W, PUI L P, et al. Co-extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage[J]. Food Process Engineering,2022,45(3):e13985. [88] TANGANURAT P. Probiotics encapsulated fruit juice bubbles as functional food product[J]. International Journal of GEOMATE,2020,19(72):145−150. [89] BUDHWAR S, SETHI K, CHAKRABORTY M. Efficacy of germination and probiotic fermentation on underutilized cereal and millet grains[J]. Food Production Processing and Nutrition,2020,2(1):12. doi: 10.1186/s43014-020-00026-w [90] ARSLAN T S, ERBAS M, GORGULU A. The use of probiotic-loaded single and double layered microcapsules in cake production[J]. Probiotics and Antimicrobial Proteins,2018,11:840−849. [91] BAMPI G B, BACKES G T, CANSIAN R L, et al. Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars[J]. Food Bioprocess Technology,2016,9:1422−1428. doi: 10.1007/s11947-016-1724-z [92] LASTA E L, SILVA P R E D, DEKKER R F H, et al. Encapsulation and dispersion of Lactobacillus acidophilus in a chocolate coating as a strategy for maintaining cell viability in cereal bars[J]. Scientific Reports,2021,11:20550. doi: 10.1038/s41598-021-00077-0 [93] ZANJANI M A K. Microencapsulation of Lactobacillus casei with calcium alginate-resistant starch and evaluation of survival and sensory properties in cream-filled cake[J]. African Journal of Microbiology Research,2012,6(26):5511−5517. [94] HADIDI M, MAJIDIYAN N, JELYANI A Z, et al. Alginate/fish gelatin-encapsulated Lactobacillus acidophilus: A study on viability and technological quality of bread during baking and storage[J]. Foods,2021,10(9):2215. doi: 10.3390/foods10092215 [95] GHASEMI L, NOURI L, NAFCHI A M, et al. The effects of encapsulated probiotic bacteria on the physicochemical properties, staling, and viability of probiotic bacteria in gluten-free bread[J]. Journal of Food Process and Preservation,2022,46(3):e16359. -