Sulfation Modification and Properties Analysis of Soluble Dietary Fiber from Rosa sterilis Pomace
-
摘要: 以无籽刺梨渣可溶性膳食纤维(Rosa sterilis Soluble Dietary Fiber,RSDF)为原料,取代度为评价指标,对RSDF进行硫酸酯化改性(氨基磺酸-N,N二甲基甲酰胺法),制取硫酸酯化无籽刺梨渣可溶性膳食纤维(Sulfated Soluble Dietary Fiber,SSDF)。探究料液比(g/mL)、氨基磺酸比(g/g)、反应时间(min)以及反应温度(℃)对取代度影响,并进行4因素3水平正交试验,获取最佳酯化工艺,最后采用红外光谱与差示扫描量热对比分析RSDF与SSDF差异。结果表明,硫酸酯化最佳条件为料液比1:80 g/mL、氨基磺酸比1:4 g/g、反应时间195 min和反应温度80 ℃,此条件下SSDF的取代度为1.84±0.19。红外光谱表明经硫酸酯化改性后SSDF在1254 cm−1与893 cm−1处出现了硫酸酯化物的特征峰,表明硫酸酯化成功。差示扫描量热分析表明经改性后SSDF的熔融温度为140 ℃,热稳定性略低于RSDF。Abstract: In this paper, the Rosa sterilis soluble dietary fiber (RSDF) was used as raw material. The degree of substitution was used as the evaluation index, the RSDF was modified by sulfate esterification (Sulfamic acid-N,N-dimethylformamide method) and prepared sulfated soluble dietary fiber (SSDF). The influence of RSDF and N,N-dimethylformamide solid-liquid ratio (g/mL), RSDF and sulfamic acid ratio (g/g), reaction time (min) and reaction temperature (℃) on the degree of substitution were investigated, and three levels of the four single factors were selected for orthogonal test to obtain the best esterification process. Finally, the difference between RSDF and SSDF was analyzed by infrared spectroscopy and differential scanning calorimetry. The results showed that the optimal conditions were solid-liquid ratio of 1:80 g/mL, sulfamic acid ratio of 1:4 g/g, reaction time of 195 min and reaction temperature of 80 ℃. Under these conditions, the substitution degree of SSDF was 1.84±0.19. Infrared spectrum showed that the characteristic peak of SSDF at 1254 cm−1 and 893 cm−1 appeared after the sulfated modification, indicated that the sulfated was successful. Differential scanning calorimetry analysis showed that the melting temperature of SSDF was 140 ℃ and its thermal stability was slightly lower than RSDF.
-
Key words:
- sulfated /
- soluble dietary fiber /
- Rosa sterilis pomace /
- process optimization
-
表 1 正交因素水平设计
Table 1. Level of orthogonal factors
水平 A料液比
(g/mL)B氨基磺酸比
(g/g)C反应温度
(℃)D反应时间
(min)1 1:60 1:2 65 105 2 1:70 1:3 80 150 3 1:80 1:4 95 195 表 2 正交试验设计及结果
Table 2. Design and results of orthogonal experiment
试验号 A B C D 取代度 1 1 1 1 1 0.55±0.07 2 1 2 2 2 1.80±0.10 3 1 3 3 3 1.44±0.05 4 2 1 2 3 1.72±0.51 5 2 2 3 1 0.59±0.21 6 2 3 1 2 0.92±0.02 7 3 1 3 2 1.58±0.46 8 3 2 1 3 1.23±0.31 9 3 3 2 1 1.75±0.40 K1 3.79 3.85 2.7 2.89 K2 3.23 3.62 5.27 4.30 K3 4.56 4.11 3.61 4.39 k1 1.26 1.28 0.90 0.96 k2 1.08 1.21 1.76 1.43 k3 1.52 1.37 1.20 1.46 R 1.33 0.49 2.57 1.50 C>D>A>B A3B3C2D3 -
[1] 郑元, 吴月圆, 辛培尧, 等. 环境因子对无籽刺梨光合生理日变化进程的影响研究[J]. 西部林业科学,2013,42(3):21−27. [ZHENG Y, WU Y Y, XIN P Y, et al. Relationship between photosynthetic physiology diurnal dynamics of Rosa sterilis and environmental factors[J]. Journal of West China Forestry Science,2013,42(3):21−27. doi: 10.3969/j.issn.1672-8246.2013.03.005 [2] 李晗, 范方宇, 戚建华, 等. 超声辅助酶法提取无籽刺梨渣膳食纤维及理化性质评价[J]. 食品科技,2021,46(4):194−201. [LI H, FAN F Y, QI J H, et al. Ultrasonic assisted enzymatic extraction of dietary fiber from Rosa sterilis pomace and its physicochemical properties[J]. Food Science and Technology,2021,46(4):194−201. doi: 10.13684/j.cnki.spkj.2021.04.030 [3] YANG Q Q, ZHANG D, FARHA A K, et al. Phytochemicals, essential oils, and bioactivities of an underutilized wild fruit Cili (Rosa roxburghii)[J]. Industrial Crops and Products,2020,143:111928. doi: 10.1016/j.indcrop.2019.111928 [4] YANG H, HU J W, HUANG X F, et al. Risk assessment of heavy metals pollution for Rosa sterilis and soil from planting bases located in karst areas of Guizhou Province[J]. Applied Mechanics and Materials,2014,700:475−481. doi: 10.4028/www.scientific.net/AMM.700.475 [5] ZHU J Z, ZHANG B, WANG B X, et al. In-vitro inhibitory effects of flavonoids in Rosa roxburghii and R. sterilis fruits on α-glucosidase: Effect of stomach digestion on flavonoids alone and in combination with acarbose[J]. Journal of Functional Foods,2019,54:13−21. doi: 10.1016/j.jff.2019.01.009 [6] 刘晓燕, 谢丹, 马立志, 等. 刺梨果渣发酵前后活性成分及抗氧化能力的比较研究[J]. 食品科技,2021,46(2):16−24. [LIU X Y, XIE D, MA L Z, et al. Comparative study on active components and antioxidant capacity of Rosa roxburghii Tratt. fruit residue before and after fermentation[J]. Food Science and Technology,2021,46(2):16−24. doi: 10.13684/j.cnki.spkj.2021.02.003 [7] ALBA K, MAC N W, LAWS A P, et al. Fractionation and characterization of dietary fibre from blackcurrant pomace[J]. Food Hydrocolloids,2018,81:398−408. doi: 10.1016/j.foodhyd.2018.03.023 [8] WANG Z J, XIE JIAN H, SHEN M Y, et al. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities[J]. Trends in Food Science & Technology,2018,74:147−157. [9] XU Y Q, GAO Y K, LIU F, et al. Sulfated modification of the polysaccharides from blackcurrant and their antioxidant and α-amylase inhibitory activities[J]. International Journal of Biological Macromolecules,2018,109:1344−1354. doi: 10.1016/j.ijbiomac.2017.11.164 [10] 杨波, 杨光, 陈远娇, 等. 纳豆多糖的硫酸化改性工艺[J]. 上海理工大学学报,2020,42(5):497−503. [YANG B, YANG G, CHEN Y J, et al. Sulfuration modification of natto polysaccharides[J]. University of Shanghai for Science and Technology,2020,42(5):497−503. doi: 10.13255/j.cnki.jusst.20191112001 [11] 张虽栓, 蔡花真. 硫酸酯化裂褶菌多糖的制备及其抗氧化活性研究[J]. 食品研究与开发,2017,38(8):17−21. [ZHANG S S, CAI H Z. Preparation and antioxidative activities of the sulfated Schizophyllan polysaccharide[J]. Food Research and Development,2017,38(8):17−21. doi: 10.3969/j.issn.1005-6521.2017.08.004 [12] LIANG W A, MAO X, PENG X H, et al. Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity[J]. Carbohydrate Polymers,2014,101:776−785. doi: 10.1016/j.carbpol.2013.10.010 [13] CHEN L, HUNG G. Antioxidant activities of sulfated pumpkin polysaccharides[J]. International Journal of Biological Macromolecules,2019,126:743−746. doi: 10.1016/j.ijbiomac.2018.12.261 [14] 巩晓佩. 硫酸化修饰红枣多糖的结构表征及生物活性的研究[D]. 石河子: 石河子大学, 2021GONG X P. Study on the structure characterization and biological activity of sulfated modified Jujube polysaccharide[D]. Shihezi: Shihezi University, 2021. [15] 沈洁, 刘昱均, 张珏. 发酵灵芝胞外多糖硫酸化修饰[J]. 食品与生物技术学报,2015,34(6):666−671. [SHEN J, LIU Y J, ZHANG J. Sulfated modification of extracellular polysaccharide from submerged fermentation of Ganoderma lucidum[J]. Journal of Food Science and Biotechnology,2015,34(6):666−671. doi: 10.3969/j.issn.1673-1689.2015.06.023 [16] 侯令. 硫酸酯化苹果渣水溶性多糖结构表征和生物活性研究[D]. 西安: 陕西科技大学, 2017HOU L. Primary structural characterization and biological activity study of sulfated apple pomace polysaccharides[D]. Xi'an: Shaanxi University of Science and Technology, 2017. [17] 周本宏, 谭珺, 张婵, 等. 硫酸酯化天麻多糖的制备及其抗氧化活性[J]. 中国医院药学杂志,2017,37(17):1685−1691. [ZHOU B H, TAN J, ZHANG C, et al. Preparation of sulfated polysaccharides from Gastrodia elata Blume and its antioxidant activity[J]. Chinese Hospital Pharmacy Journal,2017,37(17):1685−1691. doi: 10.13286/j.cnki.chinhosppharmacyj.2017.17.07 [18] CHEN Y, ZHANG H, WANG Y, et al. Sulfated modification of the polysaccharides from Ganoderma atrum and their antioxidant and immunomodulating activities[J]. Food Chemistry,2015,186:231−238. doi: 10.1016/j.foodchem.2014.10.032 [19] HE L, YAN X T, LIANG J, et al. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem[J]. Carbohydrate Polymers,2018,198:101−108. doi: 10.1016/j.carbpol.2018.06.073 [20] WANG J, BAO A, MENG X, et al. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro[J]. Carbohydrate Polymers,2018,184:366−375. doi: 10.1016/j.carbpol.2017.12.065 [21] 朱玉婷, 谭姚, 莫开菊. 硫酸酯化修饰葛仙米多糖工艺研究[J]. 食品科学,2011,32(24):46−49. [ZHU Y T, TAN Y, MO K J. Sulfation modification of polysaccharide extracted from Nostoc sphaeroides Kützing[J]. Food Science,2011,32(24):46−49. [22] 刘昱均. 发酵灵芝多糖的硫酸酯化及其生物活性的研究[D]. 无锡: 江南大学, 2013LIU Y J. Studies of fermented Ganoderma lucidum polysaccharides modified by sulfuric acid and their biological activity[D]. Wuxi: Jiangnan University, 2013. [23] 王文侠, 王龙艳, 宋春丽, 等. 豆渣多糖硫酸酯化工艺条件优化及其抗氧化活性[J]. 食品与发酵工业,2013,39(1):103−107. [WANG W X, WANG L Y, SONG C L et al. Optimization on sulfuric acid esterification process conditions of bean dregs polysaccharide and antioxidant activity[J]. Food and Fermentation Industries,2013,39(1):103−107. doi: 10.13995/j.cnki.11-1802/ts.2013.01.023 [24] SI X, ZHOU Z K, BU D D, et al. Effect of sulfation on the antioxidant properties and in vitro cell proliferation characteristics of polysaccharides isolated from corn bran[J]. Cyta-Journal of Food,2016,14(4):555−564. doi: 10.1080/19476337.2016.1176074 [25] YANG J H, DU Y M, WEN Y, et al. Sulfation of Chinese lacquer polysaccharides in different solvents[J]. Carbohydrate Polymers,2003,52(4):397−403. doi: 10.1016/S0144-8617(02)00330-2 [26] 吴海波, 于静雯, 吴长玲, 等. 空化微射流对豆渣膳食纤维结构及功能特性影响[J]. 食品科学,2020,41(1):94−99. [WU H B, YU J W, WU C L et al. Cavitation microjet effects on structural and functional properties of okara dietary fiber[J]. Food Science,2020,41(1):94−99. doi: 10.7506/spkx1002-6630-20181119-215 [27] 陈放. 苦瓜多糖及其衍生物的制备和抗氧化活性研究[D]. 重庆: 重庆师范大学, 2020CHENG F. Study on preparation and antioxidant activity of Momordica charantia polysaccharide and its derivatives[D]. Chongqing: Chongqing Normal University, 2020. [28] 黄诗雨. 米糠多糖及衍生物的制备与抗氧化活性研究[D]. 重庆: 重庆师范大学, 2021HUANG S Y. Preparation and antioxidant activity of rice bran polysaccharide and its derivatives[D]. Chongqing: Chongqing Normal University, 2021. [29] ZHANG C, CHEN H M, BAI W Q. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice[J]. International Journal of Biological Macromolecules,2018,115:45−52. doi: 10.1016/j.ijbiomac.2018.04.039 [30] 王中华, 蔡同强, 杨丛远, 等. 鸡血藤多糖的硫酸化修饰、表征及活性研究[J]. 广西大学学报(自然科学版),2018,43(5):2041−2046. [WANG Z H, CAI T Q, YANG C Y et al. Sulfated modification, characterization and activities of polysaccharides from Millettia dielsiana[J]. Journal of Guangxi University (Natural Science Edition),2018,43(5):2041−2046. -