Analysis of Volatile Components of Nine Punica grcanatum L. Cultivars Grown in Xinjiang Based on Electronic Nose and HS-SPME-GC-MS
-
摘要: 本研究采用电子鼻(Electronic Nose)与顶空固相微萃取-气相色谱-质谱联用(headspace solid-phase micro-extraction gas chromatography-mass spectrometer,HS-SPME-GC-MS)技术相结合对新疆南部地区9个不同石榴品种的果实挥发性成分进行比较分析,并对固相微萃取的条件进行了优化。结果表明:顶空固相微萃取的较优条件为:加盐量0.3 g/mL,萃取时间45 min,萃取温度45 ℃。电子鼻结果表明不同品种石榴果实之间的整体挥发性成分之间存在差异性。HS-SPME-GC-MS从9个石榴果实样品中共检测出73种化合物,其中萜烯类物质23种,醇类物质16种,酯类物质3种,醛类物质15种,酮类物质5种,酸类物质8种,其它3种。不同石榴品种之间果实的共有挥发性成分有6种,相对含量为63.11%~92.32%,它们构成了新疆石榴果实挥发性成分的主体特征,特有挥发成分分别有2、6、0、1、3、3、3、3、3种,赋予了不同品种石榴果实各自特有的风味特点,该研究结果可为新疆地区部分石榴品种的品质评价和综合利用提供参考依据。Abstract: In this study, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and electronic nose technology were used to analyze the volatile components of the fruit from nine pomegranate (Punica granatum) cultivars grown in southern Xinjiang. The conditions for solid-phase microextraction were optimized. The optimal conditions for headspace solid-phase microextraction were as follows: salt concentration 0.3 g/mL, extraction time 45 min, and extraction temperature 45 °C. The electronic nose detected differences in the volatile components of the fruit among the pomegranate cultivars. A total of 73 compounds were detected from the nine pomegranate fruit samples by HS-SPME-GC-MS, comprising 23 terpenes, 16 alcohols, 3 esters, 15 aldehydes, 5 ketones, 8 acids, and 3 others. Thus, six types of volatile components were distinguished, with a relative content of 63.11%~92.32%, which comprised the main constituents of the volatile components of Xinjiang pomegranate fruit. In each of the nine cultivars, 2, 6, 0, 1, 3, 3, 3, 3, and 3 unique volatile components were detected, hence each cultivar had a unique complement of fruit volatiles. The results could provide a reference for fruit quality evaluation and utilization of pomegranate cultivars in Xinjiang.
-
表 1 实验材料
Table 1. Experimental materials
编号 样品名称 采集地 特征 N1 酸石榴 叶城县伯西热克乡 果实较大、果皮浅红泛青有斑点、
籽粒浅粉色N2 甜石榴 喀什市佰什克然木乡 果实较小、果皮泛白有斑点、
籽粒深红色N3 酸石榴 喀什市阿瓦提乡 果实较大、果皮稍泛青、
籽粒深红色N4 酸石榴 喀什市佰什克然木乡 果实较小、果皮深红色、
籽粒血红色N5 甜石榴 喀什市阿瓦提乡 果实较大、果皮红色有麻点、
籽粒红色N6 甜石榴 策勒县策勒乡 果实较小、果皮深红有黄色斑点、
籽粒深红色N7 酸石榴 喀什市阿瓦提乡 果实较小、果皮深红有斑点、
籽粒粉红色N8 酸石榴 策勒县策勒乡 果实较小、果皮粉红有锈迹、
籽粒浅红色N9 酸石榴 皮山县藏桂乡 果实偏小、果皮深红有麻点、
籽粒粉红色表 2 PEN电子鼻传感器敏感物质
Table 2. Sensitive substances of PEN electronic nose sensor
编号 传感器 敏感物质 S1 W1C 芳烃化合物 S2 W5S 氮氧化物 S3 W3C 氨,芳香分子 S4 W6S 氢化物 S5 W5C 烯烃,芳族,极性分子 S6 W1S 烷类 S7 W1W 硫化合物 S8 W2S 部分芳香族化合物及醇类 S9 W2W 硫的有机化合物、芳烃化合物 S10 W3S 烷类和脂肪 表 3 正构烷烃的出峰保留时间
Table 3. Peak retention time of n-alkanes
名称 保留时间(min) 名称 保留时间(min) 正辛烷 5.184 正十五烷 21.653 正壬烷 7.447 正十六烷 23.213 正癸烷 9.958 正十七烷 24.585 正十一烷 12.553 正十八烷 25.830 正十二烷 15.106 正十九烷 26.980 正十三烷 17.563 正二十烷 28.085 正十四烷 19.819 正二十一烷 30.865 表 4 新疆不同品种石榴果实中的挥发性物质及相对含量
Table 4. Volatile substances and relative contents in different pomegranate cultivars in Xinjiang
类别 化学名称 保留时间
(min)引用
RI值相对含量(%) N1 N2 N3 N4 N5 N6 N7 N8 N9 醇类 正己醇 6.733 868 52.42 61.28 16.64 11.39 21.9 17.15 55.03 39.93 8.72 叶醇 6.349 851 25.65 18.09 16.93 10.84 11.81 9.34 29.5 16.36 9.19 正癸醇 16.744 1266 0.11 0.11 0.21 0.21 0.07 0.04 0.07 0.09 − 癸醇 15.123 1203 − 0.13 − − − − − − 0.14 月桂醇 21.099 1466 0.16 0.18 0.38 0.40 0.22 0.20 0.14 0.13 0.15 芳樟醇 12.417 1094 0.49 − − 0.87 − − − 1.23 0.52 1-壬醇 14.249 1169 0.18 − 0.25 − − − 0.18 0.29 0.12 异戊烯醇 4.642 778 0.37 − 0.70 0.31 − − − 0.23 − (-)-4-萜品醇 14.520 1182 0.22 0.53 0.48 0.58 − 1.73 0.14 0.25 0.30 对甲基苯异丙醇 14.648 1183 0.17 0.22 0.26 0.22 − − 0.07 0.35 0.11 (+)-a−松油醇 14.893 1192 4.30 6.73 6.42 5.20 − 1.60 2.41 5.52 3.46 橙花叔醇 21.741 1526 − − 0.06 0.11 − − − − 0.03 1,4-桉叶素 10.250 1016 0.08 − 0.21 0.23 − 0.02 − 0.30 0.08 正庚醇 9.110 966 − 0.07 − − − − − 0.12 − 1-十六烷醇 26.715 1875 − − − − − − − 0.01 − 丁基卡必醇 14.605 1184 − 0.14 0.17 0.35 − − 0.14 − 0.14 醛类 正己醛 5.117 798 12.45 4.99 47.98 60.09 28.53 41.43 9.36 29.84 73.35 (E)-2-己烯醛 6.120 848 0.11 − − 0.62 0.15 0.20 0.04 0.31 0.14 (E,E)-2,4-己二烯醛 7.620 906 0.61 − 2.54 2.36 0.44 0.83 − 1.33 2.04 (E)-2-庚烯醛 8.744 953 0.02 − 0.21 − − − 0.05 0.12 0.04 正辛醛 9.924 997 0.14 − 0.18 0.28 − − 0.08 0.37 − 壬醛 12.537 1099 0.25 0.23 0.71 0.89 0.26 0.21 0.39 0.47 0.36 癸醛 15.119 1202 0.13 − 0.34 0.41 0.11 0.08 0.26 0.29 0.17 十二醛 19.880 1401 0.03 − 0.06 0.06 − − 0.03 0.02 − 苯甲醛 8.870 958 − 0.07 − − − − − − − 1-壬醛 14.258 1169 − 0.12 − 0.20 − − − − − 苯乙醛 10.951 1043 − − − − − 0.03 − − − P-伞花烃 10.499 1026 0.08 − 0.20 0.18 − 0.25 − − − (Z)-癸-2-烯醛 16.498 1254 − − − − − − − 0.03 − 月桂醛 19.883 1405 − − − − − − − − 0.03 酸类 软脂酸 27.549 1951 0.39 0.51 0.35 0.52 0.39 0.65 0.47 0.32 0.36 正己酸 9.389 976 0.27 0.14 0.74 − − − 0.19 − − 辛酸 14.170 1169 0.02 0.05 0.11 0.06 − − 0.04 − 0.05 壬酸 16.544 1260 0.02 0.05 0.10 0.12 − 0.03 0.04 0.05 0.04 肉豆蔻酸 25.222 1751 0.02 − − − − − − − − (E)-2-庚烯酸 8.753 954 − − − 0.23 − − − − − 己酸 9.343 970 − − − − − − − − 0.01 苯甲酸 13.965 1170 0.07 0.20 0.17 0.15 − 0.06 0.07 0.37 0.15 烯类 β−石竹烯 20.197 1420 0.06 0.86 0.26 0.26 17.91 12.50 0.04 − − 柠檬烯 10.621 1026 0.92 2.95 2.09 1.73 2.51 1.98 0.80 0.97 − 反式-α−香柠檬烯 20.037 1423 − − 0.12 − − 0.79 − − − β−蒎烯 9.308 973 − 0.49 − − 0.49 − − − 0.05 γ-松油烯 11.375 1060 − 0.09 − − − − − − − B-倍半水芹烯 22.005 1523 − 0.12 − 0.12 0.33 0.56 − − − β−红没药烯 21.739 1506 − 0.20 − − 1.47 0.84 − − − 反式-β−金合欢烯 20.732 1450 − 0.24 0.07 − 3.87 2.69 − − − α−法呢烯 22.062 1505 − − − − 0.09 0.06 − − − 2,6-二甲基-6-(4-甲基-3-戊烯基)双环[3.1.1]庚-2-烯 20.416 1433 − − − 0.20 7.51 − 0.03 − − 1R-(1R*,4Z,9S*)]-4,11,11-三甲基-8-亚甲基-二环[7.2.0]4-十一烯 20.360 1407 − − − − 0.31 − − − − 1-甲基-4-[(2E)-6-甲基-2,5-庚二烯-2-基环己烯 22.258 1504 − − − − 0.09 − − − − α−姜黄烯 21.269 1486 − 0.08 − − 0.58 0.34 − − − α−水芹烯 10.040 1003 − 0.05 − − − − − − − 姜烯 21.508 1495 − − − − 0.15 0.09 − − − 桧烯 9.174 971 − − − − − 0.03 − − − (-)-异丁香烯 19.897 1407 − − − − − 0.21 − − − β−月桂烯 9.603 988 − − − − 0.43 0.06 − − − 蒈烯 10.308 1004 − − − − 0.10 − − − − 十五烯 21.449 1492 − − − − − − − 0.06 − 1-石竹烯 20.199 1420 − − − − − − − − 0.02 1-十六烯 21.443 1590 − 0.08 − − − − − − − α−香柠檬烯 20.412 1433 − − − − − 5.80 − − 0.05 酮类 2-壬酮 12.179 1089 0.22 − 0.66 0.26 − − 0.22 0.38 − 苯乙酮 11.525 1062 − 0.08 0.40 0.32 0.14 0.08 0.08 0.14 − 6,10-二丁基-5,9-十一双烯-2-酮 20.610 1460 0.04 − − − − − − − − 橙化基丙酮 20.613 1438 − 0.06 − − − − − − − 香叶基丙酮 20.614 1448 − − − 0.06 − − − 0.12 0.03 酯类 乙酸己酯 10.160 1010 − − − − − − 0.03 − − 丁酸癸酯 19.109 1333 − − − − − − 0.08 − 0.15 棕榈酸异丙酯 28.277 1981 − − − − − − 0.02 − − 其它 2,4-二叔丁基苯酚 21.661 1502 − 0.79 − − − − − − − 愈创木酚 12.040 1084 − 0.07 − 0.17 − − − − − 石竹素 23.000 1583 − − − − 0.14 0.12 − − − 注:1~9顺序同表1,“-”表示未检测到。 -
[1] GORNA, BARBARA, GUMIENNA, et al. Bioactive components of pomegranate fruit and their transformation by fermentation processes[J]. Zeitschrift Fur Lebensmittel Untersuchung Und Forschung A,2016(242):631−640. [2] 王园. 石榴叶多酚的提取及在抗衰老化妆品中的应用研究[D]. 开封: 河南大学, 2019.WANG Yuan. Extraction of polyphenols from pomegranate leaves and its application in anti-aging cosmetics[D]. Kaifeng: Henan University, 2019. [3] CHAN L P, TSENG Y P, LIU C, et al. Fermented pomegranate extracts protect against oxidative stress and aging of skin[J]. Journal of Cosmetic Dermatology,2022,21(5):2236−2245. doi: 10.1111/jocd.14379 [4] HANAFY S M, EI-SHAFEA Y, SALEH W D, et al. Chemical profiling, in vitro antimicrobial and antioxidant activities of pomegranate, orange and banana peel-extracts against pathogenic microorganisms[J]. Journal of Genetic Engineering and Biotechnology, 2021, 19(1):80. [5] SHEMA-DIDI L, KRISTAL B, SELA S, et al. Does pomegranate intake attenuate cardiovascular risk factors in hemodialysis patients?[J]. Nutrition Journal,2014:13. [6] WONG T L, STRANDBERG K R, CROLEY C R, et al. Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention[J]. Seminars in Cancer Biology, 2021, 73: 265−293. [7] 刘宇, 蔡霞, 曾勇, 等. 石榴药理研究新进展[J]. 世界科学技术:中医药现代化,2015,17(3):679−686. [LIU Yu, CAI Xia, ZENG Yong, et al. New development on pharmacological effects of Punica granatum LJ]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2015,17(3):679−686. [8] 田丽, 康宇鸿, 周婷, 等. 石榴汁含样血清对肝癌细胞JHH-7凋亡和迁移的影响及机制初探[J]. 现代预防医学,2022,49(5):883−887,926. [TIAN Li, KANG Yuhong, ZHOU Ting, et al. Effects of pomegranate juice-containing serum on apoptosis and migration of hepatocellular carcinoma JHH-7 cells and its mechanism[J]. Modern Preventive Medicine,2022,49(5):883−887,926. [9] G K ASERI, NEELAM JAIN, JITENDRA PANWA, et al. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert[J]. Scientia Horticulturae,2008,117(2):130−135. doi: 10.1016/j.scienta.2008.03.014 [10] 杨磊, 靳娟, 樊丁宇, 等. 新疆石榴果实品质主成分分析[J]. 新疆农业科学,2018,55(2):262−268. [YANG Lei, JIN Juan, FAN Dingyu, et al. Principal component analysis of fruit quality of different pomegranate varieties in Xinjiang[J]. Xinjiang Agricultural Science,2018,55(2):262−268. [11] 孙久文, 胡俊彦. 基于构建新发展格局的西部大开发战略探索[J]. 区域经济评论,2022(2):23−27. [SUN Jiuwen, HU Junyan. Exploration of western development strategy based on building a new development pattern[J]. Regional Economic Review,2022(2):23−27. [12] 孙长平. 新疆特色林果产业发展研究[D]. 乌鲁木齐: 新疆农业大学, 2010.SUN Changping. Study on the development of Xinjiang's special fruit industry[D]. Urumqi: Xinjiang Agricultural University, 2010. [13] BEAULIEU J C, LIOYD S W, PREECE J E, et al. Physicochemical properties and aroma volatile profiles in a diverse collection of California-grown pomegranate (Punica granatum L.) germplasm[J]. Food Chemistry,2015,181(Aug.15):354−364. [14] 张岩, 邹琴艳, 吴帅, 等. 不同石榴品种果实不同部位酚类物质含量和抗氧化能力比较[J]. 农学学报,2020,10(12):57−67. [ZHANG Yan, ZOU Qinyan, WU Shuai, et al. Comparison of phenolic content and antioxidant capacity in fruit parts of different pomegranate varieties[J]. Journal of Agriculture,2020,10(12):57−67. [15] 张郴, 陈建雯, 杨剑兵. 不同石榴品种果实酚类物质和抗氧化能力研究进展[J]. 中国社区医师,2018,34(18):10−11. [ZHANG Chen, CHEN Jianwen, YANG Jianbing. Research progress on phenolic compounds and antioxidant capacity of different pomegranate cultivars[J]. Chinese Community Doctor,2018,34(18):10−11. [16] 樊丹敏, 兰玉倩, 吕俊梅, 等. 石榴果汁加工工艺研究[J]. 食品工业,2014,35(7):102−105. [FAN Danmin, LAN Yuqian, LÜ Junmei, et al. Study on the processing technique of pomegranate juice[J]. The Food Industry,2014,35(7):102−105. [17] MIHALEVA V V, VERHOEVEN H A, VOS R C H D, et al. Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index[J]. Bioinformatics,2009(6):787−794. [18] 雷春妮, 王波, 孙苗苗, 等. GC-MS-AMDIS结合保留指数在玫瑰花露香气成分准确定性分析中的应用[J]. 质谱学报,2022,43(1):109−120. [LEI Chunni, WANG Bo, SUN Miaomiao, et al. Application of GC-MS-AMDSIS combined with retention index in the accurate qualitative analysis of aroma components in rose water[J]. Journal of Chinese Mass Spectrometry Society,2022,43(1):109−120. [19] 黄贵元, 赵海娟, 高阳, 等. 基于HS-SPME/GC-MS和电子鼻技术对干枣及其不同提取物挥发性成分分析[J]. 食品科学,2022,43(10):255−262. [HUANG Guiyuan, ZHAO Haijuan, GAO Yang, et al. Analysis of volatile components in dried jujube and its different extracts by headspace solid phase microextraction-gas chromatography-mass spectrometry and electronic nose[J]. Food Science,2022,43(10):255−262. [20] 孙丽君, 刘建学, 韩四海, 等. 葡萄蒸馏酒香气成分顶空固相微萃取条件优化[J]. 食品与发酵工业,2022,48(20):182−187. [SUN Lijun, LIU Jianxue, HAN Sihai, et al. Optimization of headspace solid-phase microextraction conditions for volatile compounds in grape distilled spirits[J]. Food and Fermentation Industry,2022,48(20):182−187. doi: 10.13995/j.cnki.11-1802/ts.030264 [21] 艾对, 张富新, 于玲玲, 等. 羊奶中挥发性成分顶空固相微萃取条件的优化[J]. 食品与生物技术学报,2015,34(1):40−46. [AI Dui, ZHANG Fuxin, YU Lingling, et al. Optimization of head space solid phase micro-extraction conditions for volatile components in goat milk[J]. Journal of Food and Biotechnology,2015,34(1):40−46. [22] 王丽霞, 钟海雁, 袁列江. 固相微萃取法提取果汁香气的影响因素及萃取条件的优化[J]. 安徽农业科学,2006(15):3787−3788. [WANG Lixia, ZHONG Haiyan, YUAN Liejiang. Optimization of extraction conditions and influencing factors of fruit juice aroma by solid phase microextraction[J]. Journal of Anhui Agricultural Sciences,2006(15):3787−3788. doi: 10.3969/j.issn.0517-6611.2006.15.112 [23] XIAO Zuobing, ZHOU Xuan, NIU Yunwei, et al. Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography–mass spectrometry for the determination of volatile compounds in cherry wines[J]. Journal of Chromatography B,2015,978-979:122−130. doi: 10.1016/j.jchromb.2014.12.006 [24] 张云飞, 李坚斌, 魏群舒, 等. HS-SPME/GC-MS测定石榴酒中香气组分的条件优化[J]. 食品研究与开发,2020,41(9):151−157. [ZHANG Yunfei, LI Jianbin, WEI Qunshu, et al. Optimization of conditions for determination of aroma components in pomegranate wine by HS-SPME[J]. Food Research and Development,2020,41(9):151−157. [25] 魏婧, 唐丽杰, 娄晓月, 等. 荆条不同部位挥发油成分的GC-MS分析[J]. 食品工业科技,2022,43(12):310−316. [WEI Jing, TANG Lijie, LOU Xiaoyue, et al. GC-MS analysis of constituents of volatile oil in different parts of Vitex negundo var. heterophylla[J]. Science and Technology of Food Industry,2022,43(12):310−316. doi: 10.13386/j.issn1002-0306.2021100145 [26] 苑兆和, 尹燕雷, 李自峰, 等. 石榴果实香气物质的研究[J]. 林业科学,2008(1):65−69. [YUAN Zhaohe, YIN Yanlei, LI Zifeng, et al. Aromatic substances in pomegranate fruit[J]. Scientia Silvae Sinicae,2008(1):65−69. [27] 金婷, 孙欣, 谭胜兵, 等. 不同品种石榴果实挥发成分的SPME-GC-MS分析[J]. 食品工业科技,2018,39(11):264−269. [JIN Ting, SUN Xin, TAN Shengbing, et al. SPME-GC-MS analysis of volatile components in different pomegranate varieties[J]. Science and Technology of Food Industry,2018,39(11):264−269. [28] MAYUONI-KIRSHINBAUM L, TIETEL Z, PORAT R, et al. Identification of aroma-active compounds in 'Wonderful' pomegranate fruit using solvent-assisted flavour evaporation and headspace solid-phase micro-extraction methods[J]. European Food Research and Technology,2012,235(2):277−283. [29] MELGAREJO P, CALM-SANCHEZ A, VAZQUEZ-ARUJO L, et al. Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction[J]. Journal of Food Science,2011,76(1):S114−S120. doi: 10.1111/j.1750-3841.2010.01945.x [30] ANDREU-SEVILLA A J, MENA P, N MARTÍ, et al. Volatile composition and descriptive sensory analysis of pomegranate juice and wine[J]. Food Research International,2013,54(1):246−254. doi: 10.1016/j.foodres.2013.07.007 [31] ÁNGEL CALlÍN-SÁNCHEZ, JUAN J MARTÍNEZ, LAURA VÁZQUEZ-ARAÚJO, et al. Volatile composition and sensory quality of Spanish pomegranate (Punica granatum L.)[J]. Journal of the Science of Food and Agriculture,2011,91(3):586−592. [32] VAZQUEZ-ARAUJO L, CHAMBERS I E, ADHIKARI K, et al. Sensory and physicochemical characterization of juices made with pomegranate and blueberries, blackberries, or raspberries[J]. Journal of Food Science,2010,75(7):S398−S404. [33] YI Z, FENG T, ZHUANG H, et al. Comparison of different extraction methods in the analysis of volatile compounds in pomegranate juice[J]. Food Analytical Methods,2016,9(8):2364−2373. doi: 10.1007/s12161-016-0410-0 -