Analyzing of the Composition and Medicinal Properties of Gastrodia elata during Cooking Based on Metabonomics and Network Pharmacology
-
摘要: 目的:通过代谢组学、网络药理学及分子对接技术阐述天麻在熟制过程中成分及其药理活性变化。方法:使用LC-QTOF-MS及R语言对天麻成分进行检测和分析;通过PubChem数据库及文献查找筛选出具有生物活性的成分;使用Swiss target prediction数据库及SEA数据库对成分靶点进行预测,GeneCards数据库和OMIM数据库获取疾病靶点;通过STRING 11.5数据库及Cytoscape3.8.2软件绘制药物-化合物-靶点网络及靶点蛋白互作网络,筛选关键成分及靶点;通过DAVID数据库和OmicShare Tools对交集靶点进行GO富集和KEGG通路注释分析。结果:在熟制天麻和新鲜天麻中找出89种在含量方面具有差异的成分;分别筛选出11种具有治疗惊厥作用的成分以及410个潜在靶点,5种具有治疗糖尿病及其并发症作用的成分及698个潜在靶点;GO和KEGG富集分析发现天麻通过IL-17信号通路、cAMP信号通路、神经活性物质受体信号通路、阿尔茨海默病信号通路以及多巴胺能神经突触信号通路治疗惊厥,通过AGE-RAGE信号通路、HIF-1、VEGF以及TNF信号通路治疗糖尿病;分子对接结果显示筛选出的成分均结合在靶点蛋白的空腔中,结合自由能均小于0 kcal/mol,分子对接构象稳定。结论:熟制天麻具有更好的神经保护作用,新鲜天麻在治疗糖尿病及其引发的心血管疾病等方面具有更好的效果。Abstract: Objective: To explain the changes of composition and medicinal properties of Gastrodia elata during cooking by metabonomics, network pharmacology and molecular docking techniques. Methods: The components of Gastrodia elata were detected by LC-QTOF-MS and analyzed by R language. The bioactive ingredients were screened through PubChem database and literature. Swiss target prediction database and SEA database were used to predict the potential targets of the active ingredients, while GeneCards database and OMIM database were used to search for diseases-related targets. The STRING 11.5 database and Cytoscape3.8.2 software were used to construct drug-compound-target network and target protein interaction network. GO enrichment and KEGG pathway annotation analysis of intersection targets were performed by DAVID database and OmicShare Tools. Results: 89 Components with different contents were found in cooked Gastrodia elata and fresh Gastrodia elata. 11 Compounds were screened for the treatment of convulsion by 410 potential targets, and 5 compounds were screened for the treatment of diabetes and its complications by 698 potential targets. GO and KEGG enrichment analysis showed that Gastrodia elata treated convulsion through IL-17 signaling pathway, cAMP signaling pathway, neuroactive substance receptor signaling pathway, Alzheimer's disease signaling pathway and dopaminergic synaptic signaling pathway, while treated diabetes through AGE-RAGE signaling pathway, HIF-1, VEGF and TNF signaling pathway. The results of molecular docking showed that the selected components were all bound to the cavity of the target protein, and the binding free energy was less than 0 kcal/mol, and the molecular docking conformation was stable. Conclusion: Cooked Gastrodia elata has better neuroprotective effect, and fresh Gastrodia elata has better effect in treating diabetes mellitus and cardiovascular diseases.
-
Key words:
- Gastrodia elata /
- cooking /
- metabonomics /
- network pharmacology /
- molecular docking
-
表 1 熟制天麻及新鲜天麻的成分及功能
Table 1. Ingredients and functions of cooked and fresh Gastrodia elata
化合物 PubChem ID 成分 分子式 功能 熟制天麻 4-Hydroxybenzaldehyde 126 4-羟基苯甲醛 C7H6O2 降血糖[20],抗氧化[21],
抗惊厥与癫痫[22]Daidzein 5281708 大豆黄酮 C15H10O4 抗肿瘤[23],抗健忘[24],治疗2型糖尿病[25],降血压[26] Nicotinamide 936 烟酰胺 C6H6N2O 保护神经元[27],抗惊厥[28]治疗1型糖尿病[29],缓解胰岛素抵抗[30] p-Coumaric Acid 637542 p-香豆酸 C9H8O3 神经保护作用[31],抗癌[32-33],修复肝损伤[34],调节免疫及抗炎活性[35] Bavachinin 10337211 补骨脂二氢黄酮甲醚 C21H22O4 治疗哮喘[36],抗肿瘤[37-38] Cordycepin 6303 虫草素 C10H13N5O3 神经保护作用[39-40],治疗哮喘[41] Gastrodin 115067 天麻素 C13H18O7 抗健忘[42],促进记忆[43],神经保护作用[44-45],保肝护肝[46] Isoferulic acid 736186 异阿魏酸 C10H10O4 抗健忘[47] Biotin 171548 生物素 C10H16N2O3S 治疗脑损伤及记忆障碍[48],治疗糖尿病[49] Peonidin-3-O-glucoside 14311151 芍药苷-3-O-葡萄糖苷 C22H23O11+ 降血糖血脂[50],抗氧化[51] Luteolin-7-O-glucoside 5280637 木犀草素-7-O-葡萄糖苷 C21H20O11 调节免疫[52],抗炎[53] 新鲜天麻 Agmatine 199 精胺 C5H14N4 治疗脑梗塞及认知障碍[54],缓解疼痛[55] Spermidine 1102 亚精胺 C7H19N3 抗癌[56],治疗心血管疾病[57] Ferulic acid 445858 阿魏酸 C10H10O4 抗氧化[58],抗炎[59] Ononin 442813 芒柄花素-7-O-葡萄糖苷 C22H22O9 抗氧化[60],抗炎[61] Nicotinic acid 938 烟酸 C6H5NO2 治疗心血管疾病[62] -
[1] 黎荣. 国家地理标识 德江天麻[J]. 大众科学,2017,323(3):19. [LI R. National geographical indication-Dejiang Tianma[J]. China Public Science,2017,323(3):19. [2] 唐春梓, 廖朝林, 林先明, 等. 天麻的研究现状与展望[J]. 中国现代中药,2008(6):10−12,14. [TANG C Z, LIAO Z L, LIN X M. Research status and prospect of Gastrodia elata[J]. Modern Chinese Medicine,2008(6):10−12,14. doi: 10.3969/j.issn.1673-4890.2008.06.003 [3] ZHOU B, TAN J, ZHANG C, et al. Neuroprotective effect of polysaccharides from Gastrodia elata Blume against corticosterone-induced apoptosis in PC12 cells via inhibition of the endoplasmic reticulum stress-mediated pathway[J]. Molecular Medicine Reports,2017,17(1):1182−1190. [4] YU L, LI M, XU J Z, et al. Gastrodia elata attenuates inflammatory response by inhibiting the NF-κB pathway in rheumatoid arthritis fibroblast-like synoviocytes[J]. Biomedicine & Pharmacotherapy,2017,85:177−181. [5] LIU Y, HUANG G. The chemical composition, pharmacological effects, clinical applications and market analysis of Gastrodia elata[J]. Pharmaceutical Chemistry Journal,2017,51(3):1−5. [6] ANHUAN S, JIAN M X, FANG Y H, et al. The phenolic components of Gastrodia elata improve prognosis in rats after cerebral ischemia/reperfusion by enhancing the endogenous antioxidant mechanisms[J]. Oxidative Medicine and Cellular Longevity,2018,2018:1−16. [7] 高可新, 李利霞, 王小康. 不同炮制方法对黄芩活性成份含量及抗氧化作用的影响[J]. 中国合理用药探索,2021,18(9):109−113. [GAO K X, LI L X, WANG X K. Effects of different processing methods on the content of active components and antioxidant effect of Scutellaria baicalensis[J]. Chinese Journal of Rational Drug Use,2021,18(9):109−113. [8] 赵翡翠. 新疆准噶尔乌头亲缘关系、炮制毒效活性及化学成分研究[D]. 乌鲁木齐: 新疆医科大学, 2015ZHAO F C. Studies on the phylogenetic relationship, toxic activity during processing and chemical compositions of Xingjiang Aconitum soongaricum[D]. Urumqi: Xinjiang Medical University, 2015. [9] 李清, 谢宇璐, 许攀, 等. 基于溶剂法研究建昌帮姜天麻不同部位主成分差异[J]. 南昌工程学院学报,2020,39(4):90−95. [LI Q, XIE Y L, XU P, et al. Study on principal component difference of different parts of Jianchang Bang Gastrodia elata processed by ginger based on solvent method[J]. Journal of Nanchang Institute of Technology,2020,39(4):90−95. doi: 10.3969/j.issn.1006-4869.2020.04.017 [10] 刘启月, 李勇, 陈小龙, 等. 基于代谢组学分析桃胶中酚类化合物含量及抗氧化活性[J]. 江苏农业学报,2021,37(3):746−753. [LIU Q Y, LI Y, CHENG X L, et al. Analysis on phenolics contents and antioxidant activity in peach gum based on metabolomics[J]. Jiangsu J of Agr Sci,2021,37(3):746−753. [11] 杨二冰, 李正名. 药物分子设计中的Lipinski规则[J]. 化学通报,2006(1):16−19. [YANG E B, LI Z M. The Lipinski' s rules in drug discovery[J]. Chemistry,2006(1):16−19. doi: 10.14159/j.cnki.0441-3776.2006.01.003 [12] 陈钰婷, 王俊玲, 吴依娜. 基于网络药理学和分子对接探讨地稔治疗宫颈癌的分子机制[J]. 世界科学技术-中医药现代化,2021,23(9):10. [CHEN Y T, WANG J L, WU Y N. Study on the molecular mechanism of Melastoma dodecandrum Lour in treating cervical cancer based on network pharmacology and molecular docking[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2021,23(9):10. [13] 杨飞, 王信, 马传江, 等. 天麻加工炮制、成分分析与体内代谢研究进展[J]. 中国中药杂志,2018,43(11):2207−2215. [YANG F, WANG X, MA C J, et al. Research progress of Gastrodiae rhizoma machining processing, composition analysis and in vivo metabolism[J]. China Journal of Chinese Materia Medica,2018,43(11):2207−2215. doi: 10.19540/j.cnki.cjcmm.20180322.008 [14] 田紫平, 肖慧, 冯舒涵, 等. 天麻有效成分巴利森苷的降解规律分析[J]. 中国实验方剂学杂志,2017,23(23):18−21. [TIAN Z P, XIAO H, FENG S H, et al. Analysis of degradation mechanism of parishin in Gastrodiae rhizoma[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(23):18−21. doi: 10.13422/j.cnki.syfjx.2017230018 [15] DOWSETT L, HIGGINS E, ALANAZI S, et al. ADMA: A key player in the relationship between vascular dysfunction and inflammation in atherosclerosis[J]. Journal of Clinical Medicine,2020,9(9):3026. doi: 10.3390/jcm9093026 [16] 李姣锋, 罗健东. 非对称二甲基精氨酸诱导大鼠心肌细胞肥大的作用[J]. 广州医学院学报,2008,159(1):5−9. [LI J F, LUO J D. Induced cardiomyocyte hypertrophy in rats by asymmetric dimethyl-arginine[J]. Academic Journal of Guangzhou Medical College,2008,159(1):5−9. [17] MIRVISH S S, SAMS J, HECHT S S. Kinetics of nornicotine and anabasine nitrosation in relation to, n’-nitrosonornicotine occurrence in tobacco and to tobacco-induced cancer 2[J]. JNCI: Journal of the National Cancer Institute,1977,59(4):1211−1213. doi: 10.1093/jnci/59.4.1211 [18] GUILLEMIN G J. Quinolinic acid, the inescapable neurotoxin[J]. FEBS J,2012(8):65−1356. [19] STRAIN W D, PALDÁNIUS P M. Diabetes, cardiovascular disease and the microcirculation[J]. Cardiovasc Diabetol,2018(1):57. [20] MANAHARAN T, MING C H, PALANISAMY U D. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells[J]. Food Chem,2012(2):354−363. [21] KHALLOUKI F, HAUBNER R, ULRICH C M, et al. Ethnobotanical survey, chemical composition, and antioxidant capacity of methanolic extract of the root bark of Annona cuneata Oliv.[J]. Journal of Medicinal Food,2011(11):1397−1402. [22] HA J H, LEE D U, LEE J T, et al. 4-Hydroxybenzaldehyde from Gastrodia elata B1. is active in the antioxidation and GABAergic neuromodulation of the rat brain[J]. J Ethnopharmacol,2000(1):329−333. [23] LIAN Z, NIWA K, TAGAMI K, et al. Preventive effects of isoflavones, genistein and daidzein, on estradiol-17beta-related endometrial carcinogenesis in mice[J]. Jpn J Cancer Res,2001(7):726−734. [24] KIM D H, JUNG H A, PARK S J, et al. The effects of daidzin and its aglycon, daidzein, on the scopolamine induced memory impairment in male mice[J]. Archives of Pharmacal Research,2010,33(10):1685. doi: 10.1007/s12272-010-1019-2 [25] SUN A P, CHOI M S, CHO S Y, et al. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice[J]. Life Sciences,2006,79(12):1207−1213. doi: 10.1016/j.lfs.2006.03.022 [26] CAO Y X, YANG X J, JING L, et al. Effects of daidzein sulfates on blood pressure and artery of rats[J]. Basic & Clinical Pharmacology & Toxicology,2010,99(6):425−430. [27] NAJEEB U, YOUNG L H, IMRAN N M, et al. Nicotinamide inhibits alkylating agent-induced apoptotic neurodegeneration in the developing rat brain[J]. PloS One,2011,6(12):e27093. doi: 10.1371/journal.pone.0027093 [28] KRYZHANOVSKIĬ G N, SHANDRA A A. Effect of diazepam and nicotinamide on convulsive activity of various types[J]. Farmakologiia I Toksikologiia,1985,48(4):21. [29] PENBERTHY W T. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease[J]. Current Drug Metabolism,2007,8(3):245−266. doi: 10.2174/138920007780362545 [30] NEJABATI H R, SAMADI N, SHAHNAZI V, et al. Nicotinamide and its metabolite N1-methylnicotinamide alleviate endocrine and metabolic abnormalities in adipose and ovarian tissues in rat model of polycystic ovary syndrome[J]. Chemico-Biological Interactions,2020,324:109093. [31] GUVEN M, ARAS A B, AKMAN T, et al. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia[J]. Iranian Journal of Basic Medical Sciences,2015,18(4):356. [32] SHARMA S H, RAJAMANICKAM V, NAGARAJAN S. Antiproliferative effect of p-coumaric acid targets UPR activation by downregulating Grp78 in colon cancer[J]. Chemico-Biological Interactions,2018,291:16−28. doi: 10.1016/j.cbi.2018.06.001 [33] YAMAGUCHI M, MURATA T, RAMOS J W. The botanical component p-hydroxycinnamic acid suppresses the growth and bone metastatic activity of human prostate cancer PC-3 cells in vitro[J]. Journal of Cancer Research and Clinical Oncology,2021,147(2):339−350. doi: 10.1007/s00432-020-03405-5 [34] SABITHA R, NISHI K, GUNASEKARAN V P, et al. p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models[J]. Chemico-Biological Interactions,2020,321:109044. doi: 10.1016/j.cbi.2020.109044 [35] HUANG X J, YOU Y Q, XI Y, et al. p-Coumaric acid attenuates IL-1β-induced inflammatory responses and cellular senescence in rat chondrocytes[J]. Inflammation,2020,43(2):619−628. doi: 10.1007/s10753-019-01142-7 [36] ZHANG C, QIN Q, LI H. Targeted therapeutic effect of bavachinin nanospheres on pathological site of chronic asthmatic mice model[J]. Journal of Nanoscience and Nanotechnology,2021,21(2):1085−1090. doi: 10.1166/jnn.2021.18641 [37] GE L N, YAN L, LI C, et al. Bavachinin exhibits antitumor activity against non-small cell lung cancer by targeting PPARγ[J]. Molecular Medicine Reports,2019,20(3):2805−2811. [38] ZHAO C, GHOSH B, CHAKRABORTY T, et al. Bavachinin mitigates DMH induced colon cancer in rats by altering p53/Bcl2/BAX signaling associated with apoptosis[J]. Biotechnic & Histochemistry,2021,96(3):179−190. [39] GOVINDULA A, PAI A, BAGHEL S, et al. Molecular mechanisms of cordycepin emphasizing its potential against neuroinflammation: An update[J]. European Journal of Pharmacology,2021,908:174364−174364. doi: 10.1016/j.ejphar.2021.174364 [40] CHENG C Υ, ZHU X Y. Cordycepin mitigates MPTP-induced Parkinson's disease through inhibiting TLR/NF-κB signaling pathway[J]. Life Sciences,2019,223:120−127. doi: 10.1016/j.lfs.2019.02.037 [41] YANG X F, LI Y X, HE Y H, et al. Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process[J]. International Immunopharmacology,2015,26(2):401−408. doi: 10.1016/j.intimp.2015.04.017 [42] WU C R, HSIEH M T, HUANG S C, et al. Effects of Gastrodia elata and its active constituents on scopolamine-induced amnesia in rats[J]. Planta Medica,1996,62(4):317−321. doi: 10.1055/s-2006-957892 [43] HSIEH M T, WU C R, CHEN C F. Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval, but not acquisition, on the passive avoidance task in rats[J]. Journal of Ethnopharmacology,1997,56(1):45−54. doi: 10.1016/S0378-8741(96)01501-2 [44] 李旭, 徐天娇, 刘立琨, 等. 天麻素联合异钩藤碱抑制MPP+诱导的PC12细胞凋亡的抗氧化机制[J]. 中国中药杂志,2021,46(2):420−425. [LI X, XU T J, LIU L K, et al. Antioxidant mechanism of gastrodin combined with isorhynchophylline in inhibiting MPP+-induced apoptosis of PC12 cells[J]. China Journal of Chinese Materia Medica,2021,46(2):420−425. [45] 张志龙, 郜玉钢, 臧埔, 等. 天麻素、对羟基苯甲醇对中枢神经系统作用机制研究进展[J]. 中国中药杂志,2020,45(2):312−320. [ZHANG Z L, GAO Y G, ZANG P, et al. Research progress on mechanism of gastrodin and p-hydroxybenzyl alcohol on central nervous system[J]. China Journal of Chinese Materia Medica,2020,45(2):312−320. doi: 10.19540/j.cnki.cjcmm.20190730.401 [46] QU L L, YU B, LI Z, et al. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway[J]. Phytotherapy Research,2016,30(3):402−11. doi: 10.1002/ptr.5541 [47] KIM S R, KANG S Y, LEE K Y, et al. Anti-amnestic activity of E-p-methoxycinnamic acid from Scrophularia buergeriana[J]. Cognitive Brain Research,2003,17(2):454−461. doi: 10.1016/S0926-6410(03)00161-7 [48] ATTIA H, ALBUHAYRI S, ALARAIDH S, et al. Biotin, coenzyme Q10, and their combination ameliorate aluminium chloride-induced Alzheimer's disease via attenuating neuroinflammation and improving brain insulin signaling[J]. Journal of Biochemical and Molecular Toxicology,2020,34(9):e22519. [49] JEFF G M D, CDE B A, VIJAYA F A, et al. Chromium picolinate and biotin combination reduces atherogenic index of plasma in patients with type 2 diabetes mellitus: A placebo-controlled, double-blinded, randomized clinical trial[J]. American Journal of the Medical Sciences,2007,333(3):145−153. doi: 10.1097/MAJ.0b013e318031b3c9 [50] CHEN Z Q, WANG C, PAN Y X. et al. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice[J]. Food & Function,2018,9(1):426−439. [51] CUI C, ZHANG S, YOU L, et al. Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins[J]. Food Chemistry,2013,139(1-4):1−8. doi: 10.1016/j.foodchem.2013.01.107 [52] SONG Y S, PARK C M. Luteolin and luteolm-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research,2014,65:70−75. doi: 10.1016/j.fct.2013.12.017 [53] DE S A, CAPORALI S, DI DANIELE N, et al. Anti-inflammatory and proliferative properties of luteolin-7-O-glucoside[J]. International Journal of Molecular Sciences,2021,22(3):1321. doi: 10.3390/ijms22031321 [54] NKA B, SR A, SC A, et al. Involvement of hippocampal agmatine in β 1-42 amyloid induced memory impairment, neuroinflammation and BDNF signaling disruption in mice[J]. Neurotoxicology,2020,80:1−11. doi: 10.1016/j.neuro.2020.06.002 [55] KARADAG H C, ULUGOL A, TAMER M, et al. Systemic agmatine attenuates tactile allodynia in two experimental neuropathic pain models in rats[J]. Neuroscience Letters,2003,339(1):88−90. doi: 10.1016/S0304-3940(02)01456-8 [56] FAN J, FENG Z, NING C. Spermidine as a target for cancer therapy[J]. Pharmacological Research,2020,159:104943. doi: 10.1016/j.phrs.2020.104943 [57] MADEO F, EISENBERG T, PIETROCOLA F, et al. Spermidine in health and disease[J]. Science,2018,359(6374):eaan2788. doi: 10.1126/science.aan2788 [58] ZHANG Y H, ZHOU J X, ZHANG N H, et al. Process optimization for production of ferulic acid and pentosans from wheat brans by solid-state fermentation and evaluation of their antioxidant activities[J]. ACS Food Science & Technology,2022,2(7):1114−1122. [59] LI D, RUI Y X, GUO S D, et al. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives[J]. Life Sciences,2021,284:119921. doi: 10.1016/j.lfs.2021.119921 [60] LEE W, CHOO S, SIM H, et al. Inhibitory activities of ononin on particulate matter-induced oxidative stress[J]. Biotechnology and Bioprocess Engineering,2021,26(2):208−215. doi: 10.1007/s12257-020-0294-0 [61] DONG L, YIN L, ZHANG Y B, et al. Anti-inflammatory effects of ononin on lipopolysaccharide-stimulated RAW 264.7 cells[J]. Molecular Immunology,2017,83:46−51. doi: 10.1016/j.molimm.2017.01.007 [62] PRIKSZ D, LAMPE N, KOVACS A, et al. Nicotinic-acid derivative BGP-15 improves diastolic function in a rabbit model of atherosclerotic cardiomyopathy[J]. British Journal of Pharmacology,2022,179(10):2240−2258. doi: 10.1111/bph.15749 [63] 戎立保, 易文. 半夏的炮制方式及其对药效的影响探析[J]. 中国社区医师,2021,37(25):11−12. [RONG L B, YI W. The processing method of Pinellia ternata and its effect on the efficacy[J]. Chinese Community Doctors,2021,37(25):11−12. doi: 10.3969/j.issn.1007-614x.2021.25.005 [64] BAUMKTTER F, SCHMIDT N, VARGAS C, et al. Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain[J]. Journal of Neuroscience,2014,34(33):11159−11172. doi: 10.1523/JNEUROSCI.0180-14.2014 [65] MIZUKAMI K, AKATSU H, ABRAHAMSON E E, et al. Immunohistochemical analysis of hippocampal butyrylcholinesterase: Implications for regional vulnerability in Alzheimer's disease[J]. Neuropathology,2015(2):45−135. [66] JI Z, DONALDSON I J, LIU J, et al. The forkhead transcription factor FOXK2 promotes AP-1-mediated transcriptional regulation[J]. Molecular and Cellular Biology,2012,32(2):385−398. doi: 10.1128/MCB.05504-11 [67] BOSSIS G, MALNOU C E, FARRAS R, et al. Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation[J]. Molecular and Cellular Biology,2005,25(16):6964−6979. doi: 10.1128/MCB.25.16.6964-6979.2005 [68] MURPHY J F, FITZGERALD D J. Vascular endothelial growth factor induces cyclooxygenase-dependent proliferation of endothelial cells via the Vegf-2 receptor[J]. Faseb Journal,2001,15(9):1667−1669. doi: 10.1096/fj.00-0757fje [69] HABIB A A, CHATTERJEE S, PARK S K, et al. The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-κB (NF-κB)-inducing kinase to activate NF-κB identification of a novel receptor-tyrosine kinase signalosome[J]. Journal of Biological Chemistry,2001,276(12):8865−8874. doi: 10.1074/jbc.M008458200 [70] YAMAMOTO T, SEKINE Y, KASHIMA K, et al. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation[J]. Biochemical & Biophysical Research Communications,2002,297(4):811−817. [71] AGRAWAL N K, KANT S. Targeting inflammation in diabetes: Newer therapeutic options[J]. World J Diabetes,2014(5):697−710. [72] TSALAMANDRIS S, ANTONOPOULOS A S, OIKONOMOU E, et al. The role of inflammation in diabetes: Current concepts and future perspectives[J]. European Cardiology,2019,14(1):50−59. doi: 10.15420/ecr.2018.33.1 -