Isolation, Identification and Enzyme Activity Analysis of Dominant Fermentation Strains from Traditional Pickled and Dried Mustard in Ningbo
-
摘要: 以宁波地区梅干菜半成品和成品为试验材料,采用十倍稀释法分离其中优势发酵菌株,从半成品中得到7株细菌,分别命名为MGCB1~MGCB7,从成品中得到3株细菌,分别命名为MGC1~MGC3。通过形态学观察、生理生化试验及16S rRNA序列分析对菌种进行鉴定,结果表明,MGCB1~MGCB7分别为枯草芽孢杆菌属(Bacillus subtilis)、空气芽孢杆菌属(Bacillus aerius)、高山芽孢杆菌属(Bacillus altitudinis)、短小芽孢杆菌属(Bacillus pumilus)、琥珀葡萄球菌属(Staphylococcus succinus)、琥珀葡萄球菌属 (Staphylococcus succinus)和解淀粉芽孢杆菌属(Bacillus amyloliquefaciens),MGC1~MGC3分别为芽孢杆菌属(Bacillus sp.)、枝芽孢杆菌属(Virgibacillus halodenitrificans)、哥特氏芽孢杆菌属(Cytobacillus gottheilii)。MGCB1和MGCB7产酶能力相对较高,在37 ℃培养96 h后,蛋白酶活分别为16.39±0.79和13.45±0.46 U/mL,纤维素酶活分别为3.27±0.13和1.60±0.02 U/mL。研究结果可为梅干菜纯种发酵剂的开发及工业化生产提供有益参考。Abstract: With the semi-finished and finished products of pickled and dried mustard in Ningbo as experimental materials, the dominant bacteria strains were isolated by ten-fold dilution method. The results showed that seven and three bacteria were obtained from the semi-finished and finished products, respectively, which were named as strain MGCB1~MGCB7 and strain MGC1~MGC3. The ten strains were identified by morphological observation, physiological and biochemical tests, and 16S rRNA sequence analysis. They were likely belong to Bacillus subtilis (MGCB1), Bacillus aerius (MGCB2), Bacillus altitudinis (MGCB3), Bacillus pumilus (MGCB4), Staphylococcus succinus (MGCB5), Staphylococcus succinus (MGCB6) and Bacillus amyloliquefaciens (MGCB7), Bacillus sp.
(MGC1), Virgibacillus halodenitrificans (MGC2), and Cytobacillus gottheilii (MGC3), respectively. The protease activities of MGCB1 and MGCB7 were 16.39±0.79 and 13.45±0.46 U/mL, and the cellulase activities of MGCB1 and MGCB7 were 3.27±0.13 and 1.60±0.02 U/mL, respectively, after cultured at 37 ℃ for 96 h. These findings provide a useful reference for developing appropriate starter cultures to improve the quality of traditional pickled and dried mustard. -
表 1 菌落形态特征
Table 1. Characteristics of colony morphological
菌株 直径(mm) 外观 颜色 边缘 黏着性 MGCB1 20.0±1.6 圆形,表面有褶皱 灰白色 凹凸不平 很强 MGCB2 3.0±0.1 圆形,表面呈丝状凸起 乳白色 整齐 弱 MGCB3 3.1±0.1 圆形,表面呈丝状 乳白色 较整齐 弱 MGCB4 9.4±3.7 圆形,中心呈丝状 淡黄色 呈花边状 弱 MGCB5 17.6±0.5 不规则圆形,表面光滑湿润 黄色 不规则凸起 弱 MGCB6 3.4±0.1 圆形,表面光滑湿润 奶油色 呈锯齿状 弱 MGCB7 25.3±4.1 圆形,表面颗粒状 白色 整齐 较强 MGC1 10.0±0.8 圆形,表面呈细丝状 乳白色 较整齐 弱 MGC2 4.0±0.2 圆形,表面光滑 淡粉色 规则有晕边 弱 MGC3 7.6±1.2 圆形,表面光滑 淡黄色 规则有晕边 弱 表 2 生理生化试验结果
Table 2. Results of physiological and biochemical tests
特征 菌株 MGCB1 MGCB2 MGCB3 MGCB4 MGCB5 MGCB6 MGCB7 MGC1 MGC2 MGC3 氧化酶 + + + + − − + + − − 接触酶 − + + + + + − + + + 糖发酵 + + + + + + + + + + 甲基红试验 − − + + − − + + − − V-P试验 + + + + − − + + − − 苯丙氨基酸脱氨酶 − − − − − − − − − − 吲哚试验 − − − − − − − − − − 硝酸盐还原 + + − − − − + − + + 纤维素分解 − − − − − − − − − − 3-酮基乳糖 − − − − − − − − − − 脲酶 + − − − + + + − − − 色氨酸脱氨酶 − − − − − − − − − − 明胶液化 + + − − + + + + − − 精氨酸双水解酶 + + + + + + + + + − 乙酸氧化 − − − − + + − − − − 七叶灵水解 + + + + + + + + + + 耐
渗
透
压氯化钠 4% + + + + + + + + + + 8% + + + + + + + + + + 12% − + − + + + + − − − 16% − − − − − − + − − − 蔗糖 2% + + + + + + + + + − 10% + + + + + + + + − − 20% + + + + + + + + − − 40% + − − − − − − − − − 耐
酸
耐
碱pH 3.5 − − − − − − − − − − 5.5 + + + + + + + + − − 7.5 + + + + + + + + − − 9.5 + + + + + + + + + + 11.5 + + + + + + + + − − 微生物分类 芽孢杆菌属 芽孢杆菌属 芽孢杆菌属 芽孢杆菌属 葡萄球菌属 葡萄球菌属 芽孢杆菌属 芽孢杆菌属 芽孢杆菌属 芽孢杆菌属 注:“+”表示反应呈阳性或生长;“−”表示反应呈阴性或不生长。 表 3 菌株的16S rRNA序列同源性比对结果
Table 3. Homologous alignment analysis of 16S rRNA sequences of strains
菌株
编号BLAST结果 序列大小(bp) 覆盖百分率(%) 同源性(%) 菌株登录号 MGCB1 枯草芽孢杆菌属(Bacillus subtilis) 1449 99 100.00 MK521066.1 MGCB2 空气芽孢杆菌属(Bacillus aerius) 797 86 98.70 MT225712.1 MGCB3 高山芽孢杆菌属(Bacillus altitudinis) 1450 99 99.93 KU877629.1 MGCB4 短小芽孢杆菌属(Bacillus pumilus) 1449 99 99.86 JQ308586.1 MGCB5 琥珀葡萄球菌属(Staphylococcus succinus) 1450 98 100.00 MZ674190.1 MGCB6 琥珀葡萄球菌属(Staphylococcus succinus) 1452 99 99.59 MN461567.1 MGCB7 解淀粉芽孢杆菌属(Bacillus amyloliquefaciens) 1451 99 99.86 MH373537.1 MGC1 芽孢杆菌属(Bacillus sp. ) 1433 100 99.93 MH475934.1 MGC2 枝芽孢杆菌属(Virgibacillus halodenitrificans) 1468 99 99.45 MN756670.1 MGC3 哥特氏芽孢杆菌属(Cytobacillus gottheilii) 1390 99 99.86 CP071709.1 注:以上菌株E值均为0。 表 4 不同菌株的产酶能力
Table 4. Enzyme production capacity of different bacterial strains
菌株 蛋白酶活(U/mL) 纤维素酶活(U/mL) MGCB1枯草芽孢杆菌属 16.39±0.79a 3.27±0.13a MGCB2空气芽孢杆菌属 8.40±0.13cd 2.00±0.08b MGCB3高山芽孢杆菌属 9.20±0.71c 1.32±0.01de MGCB4短小芽孢杆菌属 8.76±0.42c 1.31±0.02e MGCB5琥珀葡萄球菌属 0.87±0.12e ND MGCB6琥珀葡萄球菌属 0.75±0.09e ND MGCB7解淀粉芽孢杆菌属 13.45±0.46b 1.60±0.02c MGC1芽孢杆菌属 7.82±0.36d 1.42±0.01 de MGC2枝芽孢杆菌属 ND 1.19±0.06f MGC3哥特氏芽孢杆菌属 0.29±0.05e 1.44±0.06d 注:ND表示未检测到酶活;同列不同小写字母表示差异显著(P<0.05)。 -
[1] HUANG S, HUANG M, FENG B. Antioxidant activity of extracts produced from pickled and dried mustard (Brassica juncea Coss. Var. foliosa Bailey)[J]. International Journal of Food Properties,2012,15(2):374−384. doi: 10.1080/10942912.2010.487628 [2] LI C, TANG Z F, HUANG M, et al. Antioxidant efficacy of extracts produced from pickled and dried mustard in rapeseed and peanut oils[J]. Journal of Food Science,2012,77(4):394−400. doi: 10.1111/j.1750-3841.2011.02606.x [3] LI M, HUANG M, ZHU Q, et al. Pickled and dried mustard foreign matter detection using multispectral imaging system based on single shot method[J]. Journal of Food Engineering,2020,285:110106. doi: 10.1016/j.jfoodeng.2020.110106 [4] 乔倩, 李远志, 庞宇辰, 等. 梅菜干燥技术的研究[C]. 广东省食品学会. “健康食品与功能性食品配料”学术研讨会暨2016年广东省食品学会年会论文集. 中国广东广州: 广东省食品学会, 2016: 133−135.QIAO Q, LI Y Z, PANG Y C, et al. Research on drying technology of pickled and dried mustard[C]. Guangdong Food Association. Academic Symposium on “Healthy Food and Functional Food Ingredients” and Proceedings of the Annual Conference of Guangdong Food Association in 2016. China Guangzhou, Guangdong: Guangdong Food Association, 2016: 133−135. [5] 张书弦, 李远志, 黄苇, 等. 惠州梅菜的营养价值与加工研究进展[J]. 农产品加工(学刊),2013(16):74−76. [ZHANG S X, LI Y Z, HUANG W, et al. Research progress on nutritional value and processing of pickled and dried mustard in Huizhou[J]. Agricultural Products Processing (Journal),2013(16):74−76. [6] 茹巧美, 任国平, 张学兵. 15种不同产地梅干菜营养功能与有害成分分析[J]. 中国调味品,2020,45(9):150−155. [RU Q M, REN G P, ZHANG X B. Analysis of nutritional functions and harmful components of 15 kinds of pickled and dried mustard from different origins[J]. China Condiments,2020,45(9):150−155. [7] 罗伟, 余以刚, 胡双芳, 等. 不同干燥方式加工的梅干菜风味物质研究[J]. 广东农业科学,2016,43(8):131−137. [LUO W, YU Y G, HU S F, et al. Study on the flavor compounds of pickled and dried mustard processed by different drying methods[J]. Guangdong Agricultural Science,2016,43(8):131−137. doi: 10.16768/j.issn.1004-874X.2016.08.022 [8] SHEN Q, CHENG H, PU Y F, et al. Characterization of volatile compounds in pickled and dried mustard (Brassica juncea, Coss.) using optimal HS-SPME-GC-MS[J]. CyTA-Journal of Food,2018,16(1):331−339. doi: 10.1080/19476337.2017.1380705 [9] SHEN Q, JIANG J, WANG M, et al. Volatile compounds and antioxidant properties of pickled and dried mustard as influenced by different cooking methods[J]. Journal of Food Processing and Preservation,2019,43(4):23−26. [10] 沈清, 楼乐燕, 尹培, 等. 5种梅干菜的酚类化合物及抗氧化能力比较分析[J]. 食品科学,2018,39(12):212−218. [SHEN Q, LOU L Y, YIN P, et al. Comparative analysis of phenolic compounds and antioxidant capacity of five kinds of pickled and dried mustard[J]. Food Science,2018,39(12):212−218. doi: 10.7506/spkx1002-6630-201812033 [11] 张新, 张有做. 绍兴梅干菜提取物抗氧化活性研究[J]. 食品与发酵科技,2017,53(6):75−80. [ZHANG X, ZHANG Y Z. Antioxidant activity of extracts from pickled and dried mustard in Shaoxing[J]. Food and Fermentation Science and Technology,2017,53(6):75−80. [12] 周美琪, 周其德, 田赛莺, 等. 低盐腌制对缙云梅干菜加工品质的影响[J]. 核农学报,2018,32(8):1562−1571. [ZHOU M Q, ZHOU Q D, TIAN S Y, et al. Effects of low-salt pickling on the processing quality of pickled and dried mustard in Jinyun[J]. Journal of Nuclear Agriculture,2018,32(8):1562−1571. doi: 10.11869/j.issn.100-8551.2018.08.1562 [13] 尚雪娇, 王玉荣, 杨江, 等. 应用Illumina MiSeq高通量测序技术解析梅干菜中细菌多样性[J]. 中国酿造,2019,38(1):140−144. [SHANG X J, WANG Y R, YANG J, et al. Analysis of bacterial diversity in pickled and dried mustard using Illumina MiSeq high-throughput sequencing technology[J]. China Brewing,2019,38(1):140−144. doi: 10.11882/j.issn.0254-5071.2019.01.028 [14] 陈倩, 李永杰, 扈莹莹, 等. 传统发酵食品中微生物多样性与风味形成之间关系及机制的研究进展[J]. 食品工业科技,2021,42(9):412−419. [CHEN Q, LI Y J, HU Y Y, et al. Research progress on the relationship and mechanism between microbial diversity and flavor formation in traditional fermented food[J]. Science and Technology of Food Industry,2021,42(9):412−419. doi: 10.13386/j.issn1002-0306.2020070365 [15] 刘长根. 我国传统发酵蔬菜微生物多样性比较[D]. 南昌: 南昌大学, 2019.LIU C G. Comparison of microbial diversity of traditional fermented vegetables in my country[D]. Nanchang: Nanchang University, 2019. [16] 张俊杰, 郭晨, 尚益民, 等. 鹰嘴豆纳豆优良发酵菌株的筛选与初步鉴定[J]. 中国酿造,2018,37(7):88−92. [ZHANG J J, GUO C, SHANG Y M, et al. Screening and preliminary identification of excellent fermentation strains of chickpea and natto[J]. China Brewing,2018,37(7):88−92. doi: 10.11882/j.issn.0254-5071.2018.07.018 [17] PENG Q, JIANG S, CHEN J, et al. Unique microbial diversity and metabolic pathway features of fermented vegetables from Hainan, China[J]. Frontiers in Microbiology,2018,9:399. doi: 10.3389/fmicb.2018.00399 [18] 中华人民共和国卫生部. GB 4789.2-2016 食品安全国家标准 食品微生物学检验 菌落总数测定[S]. 北京: 中国标准出版社, 2016.Ministry of Health of the People's Republic of China. GB 4789.2-2016 National Standard for Food Safety Microbiological examination of food Determination of total bacterial count[S]. Beijing: Standards Press of China, 2016. [19] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 364–398.DONG X Z, CAI M Y. Manual for systematic identification of common bacteria[M]. Beijing: Science Press, 2001: 364–398. [20] BUCHANAN R E, GIBBONS N E. Bergey’s manual of determinative bacteriology[M]. 9th ed. Beijing: Science Press, 1984. [21] 中国国家标准化管理委员会. GB/T 23527-2009 蛋白酶制剂[S]. 北京: 中国标准出版社, 2009.Standardization Administration of China. GB/T 23527-2009 Protease preparation[S]. Beijing: China Standard Press, 2009. [22] 中华人民共和国轻工行业标准. QB 2583-2003 纤维素酶制剂[S]. 北京: 中国标准出版社, 2003.People's Republic of China Light Industry Standard. QB 2583-2003 Cellulase preparation[S]. Beijing: China Standard Press, 2003. [23] 曹佳璐. 传统四川泡菜盐水乳酸菌多样性的研究[D]. 北京: 中国农业大学, 2017.CAO J L. Study on the diversity of lactic acid bacteria in traditional Sichuan pickle brine[D]. Beijing: China Agricultural University, 2017. [24] 何维, 安天星, 余玲, 等. 四川太和毛霉豆豉中优势发酵菌株的分离鉴定与酶活分析[J]. 安徽农业科学,2021,49(14):157−161. [HE W, AN T X, YU L, et al. Isolation, identification and enzyme activity analysis of dominant fermentation strain from Taihe mucor tempeh in Sichuan[J]. Anhui Agricultural Sciences,2021,49(14):157−161. doi: 10.3969/j.issn.0517-6611.2021.14.042 [25] YANG X Z, HU W Z, XIU Z L, et al. Microbial dynamics and volatilome profiles during the fermentation of Chinese northeast sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under different salt concentrations[J]. Food Research International,2020,130:108926. doi: 10.1016/j.foodres.2019.108926 [26] 虞任莹, 彭思佳, 李艺, 等. 梅干菜和腌制雪菜细菌菌群多样性分析[J]. 食品工业科技,2021,42(18):134−141. [YU R Y, PENG S J, LI Y, et al. Analysis of bacterial diversity of the pickled and dried mustard and the fermented potherb mustard[J]. Food Industry Science and Technology,2021,42(18):134−141. doi: 10.13386/j.issn1002-0306.2021010065 [27] 邓丽. 金黄色葡萄球菌拮抗细菌的分离鉴定及机制研究[D]. 贵州: 贵州大学, 2021.DENG L. Isolation, identification and mechanism of antagonistic bacteria against Staphylococcus aureus[D]. Guizhou: Guizhou University, 2021. [28] 程艳薇, 王雪郦, 俞露, 等. 贵州镇远道菜中产生物胺细菌的初步筛选及鉴定[J]. 中国酿造,2022,41(5):106−112. [CHENG Y W, WANG X L, YU L, et al. Preliminary screening and identification of biogenic amine bacteria in Zhenyuan dish of Guizhou Province[J]. China Brewing,2022,41(5):106−112. doi: 10.11882/j.issn.0254-5071.2022.05.019 [29] XU X, WU B, ZHAO W, et al. Correlation between autochthonous microbial communities and key odorants during the fermentation of red pepper (Capsicum annuum L.)[J]. Food Microbiology,2020,91:103510. doi: 10.1016/j.fm.2020.103510 [30] XIAO Y, HUANG T, HUANG C, et al. The microbial communities and flavour compounds of Jiangxi Yancai, Sichuan Paocai and Dongbei Suancai: Three major types of traditional Chinese fermented vegetables[J]. LWT-Food Science and Technology,2020,121:108865. doi: 10.1016/j.lwt.2019.108865 -