• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

多宝鱼不同水解物肽段组成及体外抗氧化活性比较

李小锋 张露 马天新 谢作桦 李金林 涂宗财

李小锋,张露,马天新,等. 多宝鱼不同水解物肽段组成及体外抗氧化活性比较[J]. 食品工业科技,2023,44(3):95−101. doi:  10.13386/j.issn1002-0306.2022040222
引用本文: 李小锋,张露,马天新,等. 多宝鱼不同水解物肽段组成及体外抗氧化活性比较[J]. 食品工业科技,2023,44(3):95−101. doi:  10.13386/j.issn1002-0306.2022040222
LI Xiaofeng, ZHANG Lu, MA Tianxin, et al. Comparison of Peptide Composition and in Vitro Antioxidant Activity of Different Hydrolysates of Turbot Meat[J]. Science and Technology of Food Industry, 2023, 44(3): 95−101. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022040222
Citation: LI Xiaofeng, ZHANG Lu, MA Tianxin, et al. Comparison of Peptide Composition and in Vitro Antioxidant Activity of Different Hydrolysates of Turbot Meat[J]. Science and Technology of Food Industry, 2023, 44(3): 95−101. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022040222

多宝鱼不同水解物肽段组成及体外抗氧化活性比较

doi: 10.13386/j.issn1002-0306.2022040222
基金项目: 国家重点研发专项项目(2018YFD0901101);国家现代农业产业技术体系建设专项基金项目(CARS-45);江西省重点研发计划项目(20192ACB60005)。
详细信息
    作者简介:

    李小锋(1997−),男,硕士研究生,研究方向:水产品加工及产品开发应用,E-mail:1947957825@qq.com

    通讯作者:

    涂宗财(1965−),男,博士,教授,研究方向:食物资源开发与高效利用,E-mail:Tuzc_mail@aliyun.com

  • 中图分类号: TS254.4

Comparison of Peptide Composition and in Vitro Antioxidant Activity of Different Hydrolysates of Turbot Meat

  • 摘要: 为研究熟化、模拟消化和酶解对多宝鱼肉水解物抗氧化活性的影响,本研究分别采用碱性蛋白酶和胃蛋白酶-胰蛋白酶水解多宝鱼生肉和熟肉,制备生肉碱性蛋白酶水解物、熟肉碱性蛋白酶水解物、生肉体外模拟消化产物和熟肉模拟消化产物,并评价其水解度、相对分子质量分布、氨基酸组成、肽段组成和体外抗氧化活性的差异。结果表明:生肉碱性蛋白酶水解物的水解度最高,为20.18%;4种水解物的分子质量分布差异明显,共有肽段仅有1条,但氨基酸组成没有显著性差异;碱性蛋白酶水解物以肽段小于1000 Da的组分为主,2~4肽的含量达64.57%~51.73%,而模拟消化产物中1000~3000 Da的组分占比超过50%,以多肽(>10)为主,熟化过程会减少小肽(<6)的比例;体外抗氧化活性分析显示,碱性蛋白酶水解物的抗氧化活性均高于模拟消化样品,熟化会降低生肉碱性蛋白酶水解物的抗氧化能力,生肉碱性蛋白酶水解物具有最高的超氧阴离子和羟基自由基清除能力,以及最佳的铁离子还原能力。因此,碱性蛋白酶是优于模拟消化的多宝鱼蛋白水解方式,鱼肉的熟化总体上会降低水解物的抗氧化能力。
  • 图  1  多宝鱼不同水解物的水解度

    Figure  1.  Degree of hydrolysis of different hydrolysates of turbot

    注:不同字母代表不同水解物间差异显著(P<0.05),图5同。

    图  2  多宝鱼不同水解物的尺寸排阻色谱图

    Figure  2.  Size exclusion chromatograms of different hydrolysates of turbot

    图  3  维恩图显示多宝鱼不同水解物中鉴定出的独特多肽

    Figure  3.  Venn diagram showing the unique peptides identified in different hydrolysates of turbot

    图  4  多宝鱼不同水解物的肽段分布

    Figure  4.  Peptide distribution of different hydrolysates of turbot fish

    图  5  多宝鱼不同水解物的体外抗氧化活性

    Figure  5.  In vitro antioxidant activity of different hydrolysates from turbot

    表  1  多宝鱼不同水解物相对分子质量分布

    Table  1.   Relative molecular weight distribution of different hydrolysates of turbot

    水解物相对含量(%)
    <500 Da500~1000 Da1000~2000 Da2000~3000 Da>3000 Da
    RAH46.8112.1629.628.183.23
    RSD17.9817.3340.4914.429.78
    SAH41.4812.4931.419.794.83
    SSD17.0514.6639.1415.7313.43
    下载: 导出CSV

    表  2  多宝鱼不同水解物的氨基酸组成

    Table  2.   Amino acid composition of different hydrolysates of turbot

    氨基酸摩尔分数(%)
    鱼肉RAHRSDSAHSSD
    天冬氨酸(Asp)10.5710.5110.5210.6610.31
    苏氨酸(Thr)5.575.495.455.495.12
    丝氨酸(Ser)5.325.495.555.535.50
    谷氨酸(Glu)13.8913.6613.7914.4114.29
    甘氨酸(Gly)7.658.938.878.929.96
    丙氨酸(Ala)8.659.058.909.309.45
    缬氨酸(Val)5.415.295.215.084.90
    甲硫氨酸(Met)2.502.392.302.291.80
    异亮氨酸(Ile)4.334.054.103.623.46
    亮氨酸(Leu)14.2313.8613.8214.2814.40
    酪氨酸(Tyr)1.251.081.090.810.66
    苯丙氨酸(Phe)3.493.353.323.113.03
    赖氨酸(Lys)8.748.248.418.378.70
    组氨酸(His)1.581.511.501.441.37
    精氨酸(Arg)4.744.664.734.454.81
    脯氨酸(Pro)2.082.452.422.252.23
    疏水性氨基酸40.6840.4440.0739.9439.28
    必需氨基酸44.2642.6642.6242.2541.43
    下载: 导出CSV
  • [1] AHN C, JE J, CHO Y. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis[J]. Food Research International,2012,49(1):92−98. doi:  10.1016/j.foodres.2012.08.002
    [2] CUI Q, SUN Y, GUO M. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate[J]. Food Chemistry,2022,366:130711. doi:  10.1016/j.foodchem.2021.130711
    [3] LV R, DONG Y, SUN N. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides[J]. Trends in Food Science & Technology,2022,122:171−186.
    [4] 李晓杰, 李富强, 朱丽萍, 等. 生物活性肽的制备与鉴定进展[J]. 齐鲁工业大学学报,2021,35(1):23−28. [LI X J, LI F Q, ZHU L P, et al. Progress of preparation and identification of bioactive peptides[J]. Journal of Qilu University of Technology,2021,35(1):23−28. doi:  10.16442/j.cnki.qlgydxxb.2021.01.005
    [5] ZHANG J, LI M, DU H. Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the antioxidation mechanisms[J]. Food Chemistry,2021,337:127921. doi:  10.1016/j.foodchem.2020.127921
    [6] ZHANG Q, TONG X, SUI X, et al. Antioxidant activity and protective effects of alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells[J]. Food Research International,2018,111:256−264. doi:  10.1016/j.foodres.2018.05.046
    [7] 包斐, 孙丽霞, 孙建华, 等. 长蛇鲻鱼蛋白水解制备抗氧化肽工艺研究[J]. 食品科技,2019,44(8):241−247. [BAO F, SUN L X, SUN J H, et al. Optimization of technology conditions for antioxidant peptides from protein hydrolysates of lizard fish[J]. Food Science and Technology,2019,44(8):241−247. doi:  10.13684/j.cnki.spkj.2019.08.043
    [8] 李亚会, 李积华, 吉宏武, 等. 远东拟沙丁鱼抗氧化肽的分离纯化及结构解析[J]. 中国食品学报,2021,21(2):229−238. [LI Y H, LI J H, JI H W, et al. Isolation, purification and structural analysis of antioxidant peptides from Sardinops sagaxs[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(2):229−238. doi:  10.16429/j.1009-7848.2021.02.028
    [9] 蔡金秀, 夏姗姗, 马佳雯, 等. 马面鱼皮胶原抗氧化肽的分离制备及稳定性研究[J]. 核农学报,2021,35(11):2569−2577. [CAI J X, XIA S S, MA J W, et al. Isolation preparation and stability of collagen antioxidant peptides from the skin of navodon septentrionalis[J]. Journal of Nuclear Agricultural Sciences,2021,35(11):2569−2577. doi:  10.11869/j.issn.100-8551.2021.11.2569
    [10] 陈丽花, 朱楚楚, 李冉冉. 体外消化对金瓜籽抗氧化肽抗氧化活性的影响[J]. 食品科学,2019,40(3):78−86. [CHEN L H, ZHU C C, LI L L. Effect of in vitro digestion on antioxidant activity of antioxidant peptides from marrow seeds[J]. Food Science,2019,40(3):78−86. doi:  10.7506/spkx1002-6630-20170829-343
    [11] 孙松, 胡玉龙, 吕丁, 等. 中国大菱鲆引进群体三代选育之后的收获体重遗传进展评估[J]. 中国农学通报,2021,37(35):118−123. [SUN S, HU Y L, LÜ D, et al. Evaluation of genetic gain for harvest body weight in turbot (Scophthalmus maximus, Linnaeus) after three generations[J]. Chinese Agricultural Science Bulletin,2021,37(35):118−123. doi:  10.11924/j.issn.1000-6850.casb2021-0016
    [12] 王志, 赵峰, 王珊珊, 等. 大菱鲆鱼皮抗氧化胶原肽的制备及特性分析[J]. 食品安全质量检测学报,2020,11(22):8267−8275. [WANG Z, ZHAO F, WANG S S, et al. Preparation and characteristic analysis of antioxidant collagen peptides from turbot skins[J]. Journal of Food Safety & Quality,2020,11(22):8267−8275. doi:  10.19812/j.cnki.jfsq11-5956/ts.2020.22.023
    [13] FANG B, SUN J, MAO X. Conversion of turbot skin wastes into valuable functional substances with an ecofriendly fermentation technology[J]. Journal of Cleaner Production,2017,156:367−377. doi:  10.1016/j.jclepro.2017.04.055
    [14] MA T X, FU Q Q, MEI Q G, et al. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking[J]. Food Chemistry,2021,354:129589. doi:  10.1016/j.foodchem.2021.129589
    [15] PAPUNGKORN S, SITTIRUK R, JIRAWAT Y. Angiotensin converting enzyme (ACE) inhibitory peptides derived from the simulated in vitro gastrointestinal digestion of cooked chicken breast[J]. Journal of Functional Foods,2019,29:77−83.
    [16] 杨文博, 张英华. 蛋白质水解度的测定方法研究[J]. 中国调味品,2014,39(3):88−90. [YANG W B, ZHANG Y H. Study on the determination methods for hydrolysis degree of protein[J]. China Condiment,2014,39(3):88−90. doi:  10.3969/j.issn.1000-9973.2014.03.022
    [17] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.5-2016食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. GB 5009.6-2016 National standard for food safety Determination of protein in foods[S]. Beijing: China Standard Press, 2016.
    [18] 李军, 罗娟, 涂宗财, 等. 鲢鱼骨胶原多肽的制备及其抗氧化活性研究[J]. 食品与发酵工业,2020,46(2):222−230. [LI J, LUO J, TU Z C, et al. Study on the preparation and antioxidant activity of collagen polypeptide from silver carp bone[J]. Food and Fermentation Industries,2020,46(2):222−230. doi:  10.13995/j.cnki.11-1802/ts.021999
    [19] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.124-2016 食品安全国家标准 食品中氨基酸的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. GB 5009.124-2016 National standard for food safety Determination of amino acids in foods[S]. Beijing: China Standard Press, 2016.
    [20] 张露, 刘鹏飞, 涂宗财, 等. 香榧不同部位提取物的抗氧化和酶抑制活性比较分析[J]. 食品科学,2018,39(10):78−83. [ZHANG L, LIU P F, TU Z C, et al. Comparison of antioxidant activity and enzyme inhibitory activity of different plant parts of Torreya grandis cv. Merrillii[J]. Food Science,2018,39(10):78−83. doi:  10.7506/spkx1002-6630-201810013
    [21] 郭洪辉, 张怡评, 洪专, 等. 河豚鱼皮胶原寡肽螯合锌的体内体外抗氧化活性研究[J]. 食品工业科技,2021,42(5):66−71. [GUO H H, ZHANG Y P, HONG Z. Study onin vivo and in vitro antioxidant activity of collagen oligopeptide chelated zinc from puffer skin[J]. Science and Technology of Food Industry,2021,42(5):66−71.
    [22] 朱敏方. 草鱼鱼肉抗氧化肽的制备、分离鉴定及其活性研究[D]. 南昌: 江西师范大学, 2020.

    ZHU M F. Preparation, Isolation, identification and activity of antioxidant peptides from grass carp (Ctenopharyngodon idella) muscle[D]. Nanchang: Jiangxi Normal University, 2020.
    [23] ZHENG Z, LI J, LI J, et al. Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes[J]. Food Hydrocolloids, 97: 105222.
    [24] VEYMR G, TACIAS P, BOBERTO M S, et al. Use of alcalase in the production of bioactive peptides: A review[J]. International Journal of Biological Macromolecules,2020,165:2143−2196. doi:  10.1016/j.ijbiomac.2020.10.060
    [25] 韦婕妤, 唐善虎, 杨琪. 不同热加工方法对羊肉制品体外模拟可消化性研究[J]. 食品科技,2018,43(12):125−130. [WEI J Y, TANG S H, YANG Q. Study on the digestion of mutton products in vitro by different heat processing methods[J]. Food Science and Technology,2018,43(12):125−130. doi:  10.13684/j.cnki.spkj.2018.12.024
    [26] KAUR L, MAUDENS E, SINGH H. Microstructure and protein digestibility of beef: The effect of cooking conditions as used in stews and curries[J]. LWT-Food Science and Technology,2014,2(55):612−620.
    [27] BHAT Z F, MORTON J, DBEKHIT A E, et al. Thermal processing implications on the digestibility of meat, fish and seafood proteins[J]. Wiley,2021,20(5):4511−4548.
    [28] YU T, MORTON J D, CLERENS S, et al. Cooking induced protein modifications in meat[J]. Comprehensive Reviews in Food Science and Food Safety,2016,16(1):141−159.
    [29] BAX M, AUBRY L, FERREIRA C, et al. Cooking temperature is a key determinant of in vitro meat protein digestion rate: Investigation of underlying mechanisms[J]. Journal of Agricultural and Food Chemistry,2012,60(10):2569−2576. doi:  10.1021/jf205280y
    [30] 马思彤, 刘静波, 张婷, 等. 体外模拟胃肠消化及碱性蛋白酶处理后蛋清肽抗氧化活性差异及肽序列解析[J]. 食品科学,2020,41(21):113−120. [MA S T, LIU J B, ZHANG T, et al. Differences in antioxidant activity and sequence analysis of egg white peptides derived from simulated gastrointestinal digestion and alkaline protease treatment[J]. Food Science,2020,41(21):113−120. doi:  10.7506/spkx1002-6630-20191024-255
    [31] GÓMEZ L J, GÓMEZ N, ALEGRA A. In vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates[J]. Food Research International,2019,120:52−61. doi:  10.1016/j.foodres.2019.02.029
    [32] WU R, WU C, HE H. Antioxidant and antifreezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease[J]. Food Chemistry,2018,248:346−352. doi:  10.1016/j.foodchem.2017.12.035
    [33] YIN Y, ZHOU L, PEREIRA J, et al. Insights into digestibility and peptide profiling of peef muscle proteins with different cooking methods[J]. Journal of Agricultural and Food Chemistry,2020,68(48):14243−14251. doi:  10.1021/acs.jafc.0c04054
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 网络出版日期:  2022-12-15
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海