Comparison of Ingredient Composition and Physicochemical Properties between Fritillaria hupehensis and Fritillaria thunbergii
-
摘要: 本文综合对比了同产区同生长周期湖北贝母与浙贝母的总酚、总黄酮、游离氨基酸、微量元素、核苷与核碱基等成分组成及其抗氧化性能、溶解度、溶胀度和糊化特性等理化性质。与湖北贝母相比,浙贝母成熟鳞茎具有较优的抗氧化活性及较高的总酚、总黄酮、DPPH值、FRAP值和ABTS值。另一方面,湖北贝母成熟鳞茎中的核苷、核碱基以及氨基酸总含量显著高于浙贝母(P<0.05),并且湖北贝母成熟鳞茎对人体必需微量元素的累积能力显著优于浙贝母(P<0.05)。DSC数据显示浙贝母鳞茎粉末具有较低的T0、Tp、Tc值和较高相变焓值ΔH,结合其高直链淀粉含量,推测浙贝母成熟鳞茎淀粉分子双螺旋结构比湖北贝母更加紧密有序。总之,湖北贝母与浙贝母成熟鳞茎的成分含量和理化性质之间存在较大差异,本研究可为贝母在功能食品中的加工应用提供参考。Abstract: In this paper, the samples of Fritillaria hupehensis and Fritillaria thunbergii were collected from the same area with identical growth cycle, and their compositions of TPC (total phenolics content), TFC (total flavonoids content), free amino acids, trace elements, nucleosides and nucleobases were comprehensively compared. Besides that, their corresponding physicochemical properties of antioxidant ability, solubility, swelling and gelatinization characteristic were also discussed. Compared with Fritillaria hupehensis, the Fritillaria thunbergii showed higher antioxidant activities in mature bulb due to its higher TPC, TFC, DPPH, FRAP and ABTS values. On the other hand, the contents of total nucleosides, nucleobases, amino acids in bulb of Fritillaria hupehensis were significantly higher than those of Fritillaria thunbergii (P<0.05), and larger amounts of essential trace elements were also accumulated in Fritillaria hupehensis (P<0.05). DSC data showed that the powder of Fritillaria thunbergii bulb had lower T0, Tp and Tc values and higher phase enthalpy value ΔH. Besides that, the higher amylose content was also found in Fritillaria thunbergii bulb. It can be concluded that the helix structure of starch molecular in Fritillaria thunbergii bulb might be more compact and ordered than that of Fritillaria hupehensis. In conclusion, the compositions and physicochemical properties were significant different between the mature bulbs of Fritillaria hupehensis and Fritillaria thunbergii. This study can provide a valuable reference for the processing and application of Fritillary as functional foods.
-
表 1 浙贝母与湖北贝母鳞茎粉末基本成分及抗氧化能力对比
Table 1. The comparison of basic components and antioxidant abilities between the bulb powder of Fritillaria thunbergii and Fritillaria hupehensis
指标 浙贝母 湖北贝母 颜色 L* 91.75±0.70a 90.12±0.07a a* −0.59±0.01b −0.35±0.02a b* 9.47±0.36b 10.69±0.08a 总淀粉(%) 56.58±0.77b 66.48±0.81a 直链淀粉(%) 10.42±0.67a 9.05±0.29b 粗蛋白(%) 0.52±0.03a 0.54±0.04a 灰分(%) 2.47±0.01b 3.77±0.13a 维生素(mg/kg) VB1 0.07±0.00b 0.28±0.01a VB2 0.09±0.01b 0.43±0.03a 总酚(μg GAE/mL) 0.49±0.01a 0.38±0.02b 总黄酮(μg RTE/mL) 0.79±0.05a 0.49±0.04b DPPH(μmolAAE/mL) 6.33±0.09a 1.85±0.03b FRAP(μmolAAE/mL) 2.52±0.16a 0.95±0.02b ABTS(μmolTE/mL) 1.36±0.04a 1.23±0.03b 注:同行小写字母不同表示差异显著,P<0.05;表2~表4同。 表 2 浙贝母与湖北贝母鳞茎粉末中核苷和核碱基含量对比(μg/g)
Table 2. Content comparison of nucleosides and nucleobases between the bulb powder of Fritillaria thunbergii and Fritillaria hupehensis (μg/g)
成分 浙贝母 湖北贝母 核苷 胞苷 13.36±0.94b 23.54±1.32a 尿苷 305.88±3.87b 335.08±6.74a 肌苷 54.56±2.77a 56.47±3.24a 脱氧肌苷 21.37±1.24a 20.76±1.85a 脱氧胸苷 95.22±4.15b 125.66±2.19a 腺苷 208.47±3.58b 287.55±10.39a 脱氧腺苷 91.48±4.93b 125.23±3.88a 核碱基 尿嘧啶 10.33±0.59a 10.38±0.87a 腺嘌呤 89.63±1.65b 96.89±1.57a 总含量 890.30±23.72b 1081.56±32.05a 表 3 浙贝母与湖北贝母鳞茎粉末中游离氨基酸含量对比(mg/g)
Table 3. Content comparison of free amino acids between the bulb powder of Fritillaria thunbergii and Fritillaria hupehensis (mg/g)
游离氨基酸 浙贝母 湖北贝母 Asp 4.41±0.28b 8.46±0.25a Glu 5.79±0.15b 7.95±0.42a Ala 1.37±0.57b 7.45±0.31a Gly 2.45±0.24b 4.49±0.14a Pro 2.01±0.23b 3.25±0.16a Ser 2.31±0.11b 4.02±0.13a Thr 1.80±0.07b 2.69±0.04a Arg 11.06±0.47b 24.03±1.66a His 0.77±0.00b 2.19±0.05a Leu 3.03±0.04b 9.19±0.79a Ile 1.24±0.09b 1.62±0.15a Met 0.01±0.00a nd Phe 3.61±0.67b 7.59±0.26a Val 2.22±0.08b 4.87±0.40a Tyr 1.29±0.36b 7.41±0.29a Lys 2.12±0.08b 5.18±0.77a Cys 0.87±0.14b 2.19±0.18a 鲜味氨基酸 10.20±0.43b 16.41±0.67a 甜味氨基酸 9.44±1.22b 21.90±0.78a 苦味氨基酸 21.94±1.35b 49.49±3.31a 无味氨基酸 4.28±0.58b 15.20±1.60b 氨基酸总含量 46.36±3.58b 102.58±6.00a 注:nd,未检测到;鲜味氨基酸:Asp+Glu;甜味氨基酸:Ala+Gly+Ser+Thr+Pro;苦味氨基酸:Arg+His+Ile+Leu+Met+Phe+Val;无味氨基酸:Lys+Tyr+Cys。 表 4 浙贝母与湖北贝母鳞茎粉末中人体必需微量元素含量对比(mg/kg)
Table 4. Content comparison of essential trace elements between the bulb powder of Fritillaria thunbergii and Fritillaria hupehensis (mg/kg)
微量元素 浙贝母 湖北贝母 Ca 349.00±18.38b 395.50±21.92a Fe 59.10±0.28b 152.00±2.83a Zn 17.70±0.14b 36.50±0.71a Mn 6.92±0.17b 22.35±0.49a Cu 3.88±0.07b 5.26±0.01a Mo 0.16±0.01a 0.08±0.00b Se 0.02±0.00b 0.03±0.00a 总含量 436.78±19.05b 611.72±25.96a 表 5 浙贝母与湖北贝母鳞茎粉末的溶解度和溶胀度对比
Table 5. The comparison of solubility (SOL) and swelling power (SP) between the bulb powder of Fritillaria thunbergii and Fritillaria hupehensis
指标 样品 55 ℃ 65 ℃ 75 ℃ 85 ℃ 95 ℃ 溶解度(SOL,%) 浙贝母 10.13±0.89b 11.35±0.75b 12.24±0.89b 14.86±0.79b 16.20±0.45b 湖北贝母 23.77±1.33a 24.17±0.48a 27.02±1.08a 29.02±0.45a 31.00±0.39a 溶胀度(SP,%) 浙贝母 2.50±0.03b 4.38±0.35a 6.81±0.24a 7.46±0.59a 8.49±0.53a 湖北贝母 3.19±0.18a 4.99±0.21a 5.91±0.38a 6.78±0.34a 7.85±0.48a 注:同列相同指标下小写字母不同表示差异显著,P<0.05。 表 6 浙贝母与湖北贝母鳞茎粉末的热力学参数对比
Table 6. The comparison of thermodynamic parameters between the bulb powder of Fritillaria thunbergii and Fritillaria hupehensis
参数 T0(℃) Tp(℃) Tc(℃) ΔH(J/g) 浙贝母 69.13±0.06b 74.53±0.05b 81.43±0.45b 4.57±0.31a 湖北贝母 73.04±0.05a 78.04±0.22a 83.89±0.45a 3.64±0.26b 注:同列小写字母不同表示差异显著,P<0.05。 -
[1] NILE S, SU J, WU D, et al. Fritillaria thunbergii Miq. (Zhe Beimu): A review on its traditional uses, phytochemical profile and pharmacological properties[J]. Food and Chemical Toxicology,2021,153:112289. doi: 10.1016/j.fct.2021.112289 [2] PENG R, MA P, MO R, et al. Analysis of the bioactive components from different growth stages of Fritillaria taipaiensis P. Y. Li[J]. Acta Pharmaceutica Sinica B,2013,3:167−173. doi: 10.1016/j.apsb.2013.04.006 [3] CHEN X, LI X, MAO X, et al. Study on the effects of different drying methods on physicochemical properties, structure, and in vitro digestibility of Fritillaria thunbergii Miq. (Zhebeimu) flours[J]. Food and Bioproducts Processing,2016,98:266−274. doi: 10.1016/j.fbp.2016.01.008 [4] 李巧, 王梅, 万子玉, 等. 贝母类药材采收和产地加工的历史沿革及研究进展[J]. 中国实验方剂学杂志,2022,28(13):269−276. [LI Q, WANG M, WAN Z Y, et al. Harvesting and primary processing in Fritillaria medicinal materials: A review[J]. Chinese Journal of Experimental Traditional Medical Formulae,2022,28(13):269−276. doi: 10.13422/j.cnki.syfjx.20211863 [5] 陈谢华. 贝母类药材研究进展[J]. 甘肃医药,2021,40(9):777−779. [CHEN X H. A review on Fritillary materials[J]. Gansu Medical Journal,2021,40(9):777−779. [6] 张翔, 李文涛, 段宝忠, 等. 基于品质特征的贝母类药材品种分类研究[J]. 中草药,2018,49(9):2140−2146. [ZHANG X, LI W T, DUAN B Z, et al. Study on classification Fritillaria based on quality characteristic[J]. Chinese Traditional and Herbal Drugs,2018,49(9):2140−2146. doi: 10.7501/j.issn.0253-2670.2018.09.025 [7] 王莉. 湖北贝母炮制工艺及质量标准的研究[D]. 武汉: 湖北中医药大学, 2010.WANG L. Hubei Fritillaria processing technology and quality standards study[D]. Wuhan: Hubei University of Chinese Medicine, 2010. [8] 游燕. 贝母类药材的分类及其功效、化学成分、药理作用之比较[J]. 江苏中医药,2010,42(2):57−58. [YOU Y. Classification of Fritillaria materials and the comparison of their efficacy, chemical composition and pharmacological effects[J]. Jiangsu Journal of Traditional Chinese Medicine,2010,42(2):57−58. doi: 10.3969/j.issn.1672-397X.2010.02.037 [9] 朱林. 贝母药材中生物碱及核苷类成分的定量分析研究[D]. 合肥: 安徽中医药大学, 2018.ZHU L. Quantitative analysis of alkaloids and nucleotides in medicinal herbs of Fritillaria[D]. Hefei: Anhui University of Chinese Medicine, 2018. [10] 王书军, 高文远, 于璟琳, 等. 淀粉的热性质在贝母类药材鉴别和分类中的应用[J]. 中国药学杂志,2007(21):1617−1620. [WANG S J, GAO W Y, YU J L, et al. An application of thermal properties of starch to the identification of the Chinese medicinal material from Fritillaria[J]. Chinese Pharmaceutical Journal,2007(21):1617−1620. doi: 10.3321/j.issn:1001-2494.2007.21.005 [11] 张平, 姜卫. 湖北贝母与浙贝母和川贝母中8种无机元素的含量比较[J]. 中国医院药学杂志,1993(8):348−349, 383−384. [ZHANG P, JIANG W. Content comparison of eight inorganic elements in Fritillaria hupehensis, Fritillaria thunbergii and Fritillaria cirrhosa[J]. Chinese Journal of Hospital Pharmacy,1993(8):348−349, 383−384. [12] CHEN Z, YIN C, FAN X, et al. Characterization of physicochemical and biological properties of Schizophyllum commune polysaccharide extracted with different methods[J]. International Journal of Biological Macromolecules,2020,156:1425−1434. doi: 10.1016/j.ijbiomac.2019.11.183 [13] 卢琪, 薛淑静, 杨德, 等. 不同干燥条件下福白菊菊花茶风味品质的比较分析[J]. 食品科学,2020,41(20):249−255. [LU Q, XUE S J, YANG D, et al. Comparative analysis of flavor quality of chrysanthemum tea (Chrysanthemum morifolium cv. ‘Fubaiju’) processed by different drying methods[J]. Food Science,2020,41(20):249−255. doi: 10.7506/spkx1002-6630-20190823-249 [14] QIAN Z, WAN J, ZHANG Q, et al. Simultaneous determination of nucleobases, nucleosides and saponins in Panax notoginseng using multiple columns high performance liquid chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,48(5):1361−1367. doi: 10.1016/j.jpba.2008.09.038 [15] YIN C, FAN X, FAN Z, et al. Comparison of non‐volatile and volatile flavor compounds in six Pleurotus mushrooms[J]. Journal of the Science of Food and Agriculture,2018,99(4):1691−1699. [16] 徐明芳, 岳甜, 傅利军, 等. 微波消解-电感耦合等离子体-质谱法同步检测白玉菇中Pb、As、Cd及其健康风险评估[J]. 食品科学,2020,41(24):333−339. [XU M F, YUE T, FU L J, et al. Simultaneous determination of Pb, As, and Cd in white Hypsizygus marmoreus by microwave digestion inductively coupled plasma-mass spectrometry and health risk assessment[J]. Food Science,2020,41(24):333−339. doi: 10.7506/spkx1002-6630-20200613-184 [17] CHEN X, LI X, MAO X, et al. Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours[J]. Food Chemistry,2017,224:224−232. doi: 10.1016/j.foodchem.2016.12.028 [18] MUKWEVHO P, EMMAMBUX M. Effect of infrared and microwave treatments alone and in combination on the functional properties of resulting flours from bambara groundnut seeds[J]. LWT-Food Science and Technology,2022,153:112448. doi: 10.1016/j.lwt.2021.112448 [19] 周小理, 陈杰圣, 王士愁, 等. 不同处理方式对苦荞直链淀粉-黄酮复合物结构及消化性的影响[J]. 粮食与油脂,2022,35(3):1−7, 21. [ZHOU X L, CHEN J S, WANG S C, et al. Effects of different treatment methods on the structure and digestibility of amylose-flavonoid complex in tartary buckwheat[J]. Cereals & Oils,2022,35(3):1−7, 21. doi: 10.3969/j.issn.1008-9578.2022.03.001 [20] 陈雪涛. 富含淀粉中药材山药和浙贝母的干燥研究[D]. 天津: 天津大学, 2017.CHEN X T. Study on the drying technology for two TCM materials that are rich in starch in Dioscorea opposita Thunb. and Fritillaria thunbergii Miq.[D]. Tianjin: Tianjin University, 2017. [21] AL-FARGA A, ZHANG H, SIDDEEG A, et al. Proximate composition, functional properties, amino acid, mineral and vitamin contents of a novel food: Alhydwan (Boerhavia elegana Choisy) seed flour[J]. Food Chemistry,2016,211:268−273. doi: 10.1016/j.foodchem.2016.05.016 [22] LU Q, LÜ S, PENG Y, et al. Characterization of phenolics and antioxidant abilities of red navel orange “Cara Cara” harvested from five regions of China[J]. International Journal of Food Properties,2018,21(1):1107−1116. doi: 10.1080/10942912.2018.1485030 [23] CHEN Z, BUCHANAN P, QUEK S. Development and validation of an HPLC-DAD-MS method for determination of four nucleoside compounds in the New Zealand native mushroom Hericium sp[J]. Food Chemistry,2019,278:729−737. doi: 10.1016/j.foodchem.2018.11.115 [24] SHASHIDAR M, GIRIDHAR P, UDAYA S, et al. Bioactive principles from Cordyceps sinensis: A potent food supplement-A review[J]. Journal of Functional Foods,2013,5(3):1013−1030. doi: 10.1016/j.jff.2013.04.018 [25] CAO X, LI J, CHEN S, et al. Simultaneous determination of nine nucleosides and nucleobases in different Fritillaria species by HPLC-diode array detector[J]. Journal of Separation Science,2010,33(11):1587−1594. doi: 10.1002/jssc.200900866 [26] QIN L, ZHANG H, CLAVER I, et al. Effect of different cooking methods on the flavour constituents of mushroom (Agaricus bisporus (Lange) Sing) soup[J]. International Journal of Food Science & Technology,2011,46(5):1100−1108. [27] GONG L, ZHANG X, QIU K, et al. Arginine promotes myogenic differentiation and myotube formation through the elevation of cytoplasmic calcium concentration[J]. Animal Nutrition,2021,7(4):1115−1123. doi: 10.1016/j.aninu.2021.05.010 [28] 林洁琼, 蔡葵, 苏艺萍, 等. 不同产地鼠曲草中微量元素和重金属元素的ICP-MS分析[J]. 亚热带植物科学,2020,49(6):443−446. [LIN J Q, CAI K, SU Y P, et al. Determination of trace elements and heavy metal elements in gnaphalium affine by ICP-MS[J]. Subtropical Plant Science,2020,49(6):443−446. doi: 10.3969/j.issn.1009-7791.2020.06.006 [29] 魏艳梅, 于湛, 王莹, 等. 微波消解-ICP-MS法测定白菜和酸菜中的微量元素[J]. 食品工业,2022,43(1):315−317. [WEI Y M, YU Z, WANG Y, et al. Determination of trace elements in Chinese cabbage and pickled cabbage by microwave digestion-ICP-MS[J]. The Food Industry,2022,43(1):315−317. [30] 褚宏欣, 牟文燕, 党海燕, 等. 我国主要麦区小麦籽粒微量元素含量及营养评价[J]. 作物学报,2022,48(11):2853−2865. [ZHU H X, MO W Y, DANG H Y, et al. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China[J]. Acta Agronomica Sinica,2022,48(11):2853−2865. [31] LAPČIKOVÁ B, LAPČÍK L, VALENTA T. Effect of the rice flour particle size and variety type on water holding capacity and water diffusivity in aqueous dispersions[J]. LWT-Food Science and Technology,2021,142:111082. doi: 10.1016/j.lwt.2021.111082 -