Research Progress on Recovery, Treatment and High-value Utilization of Cheese Whey Wastewater
-
摘要: 干酪生产中产生大量的有机废水,未经处理排放不仅对环境危害极大,同时浪费大量的资源。本文在介绍干酪乳清废水主要成分的基础上,综述了近年来国内外干酪乳清废水的处理方法和资源化利用方面的相关研究报道。着重介绍了干酪乳清废水中主要成分的膜法回收技术、干酪乳清废水的处理技术以及通过物理、化学和生物方法完成由乳清废水向生物燃料(氢气、甲烷和乙醇)、电能和化学商品(乳酸、丙酸和生物聚合物)的转化。针对上述研究现状,展望了干酪乳清废水处理方法的实施前景,旨在将不同回收利用路线进行更合理的整合,以确定干酪乳清废水的最佳处理方式。Abstract: Cheese production produces a large amount of organic wastewater, and untreated discharge is extremely harmful to the environment, which also wastes many resources. Based on introducing the main components of cheese whey wastewater, this paper reviews the treatment methods and resource utilization of cheese whey wastewater at home and abroad that have been used in recent years. The paramount manners of whey wastewater treatment and use are the membrane recovery technology of the main components of the cheese whey wastewater, the treatment technology of cheese whey wastewater, and the physical, chemical, and biological conversion of whey wastewater into biofuels (hydrogen, methane, and ethanol), electrical energy, and chemical commodities (lactic acid, propionic acid, and biopolymers). In view of the above research status, the prospect of the implementation of cheese whey wastewater treatment method is prospected, which aims to integrate different recycling routes more reasonably to determine the best treatment method for cheese whey wastewater.
-
Key words:
- cheese whey /
- organic wastewater /
- ingredients /
- biotransformation /
- recycling
-
表 1 废弃乳清与牛奶营养成分比较
Table 1. Comparison of nutrient composition between waste whey and milk
表 2 干酪乳清废水生物处理方法
Table 2. Biological treatment method of cheese whey wastewater
处理废水类型 实验条件 实验结果 工艺条件 pH T(℃) HRT(d) COD去除率(%) 干酪乳清废水 EGSB 6.82~7.62 25.2~28 6.00~8.00 90 干酪乳清废水 UASB - 33~37 0.50~2.00 80 干酪乳清废水 EGSB 7.56~8.6 30 0.25~8.00 80 干酪乳清废水 IC 7.0~7.5 35 0.20~0.25 80 干酪乳清废水 CSRT+UASB 6.3 31 0.91~2.36 95 注:HRT:水力停留时间;EGSB:膨胀颗粒污泥床;UASB:上流式厌氧污泥床;COD:化学需氧量;IC:内循环生物反应器;CSRT:连续搅拌釜式反应器。 表 3 基本控制项目最高允许排放浓度(日均值)
Table 3. Maximum allowable emission concentration of essential control items (daily average)
序号 基本控制项目 一级A标准 一级B标准 1 化学需氧量(COD,mg/L) 50 60 2 生化需氧量(BOD,mg/L) 10 20 3 悬浮物(SS,mg/L) 10 20 4 动植物油(mg/L) 1 3 5 石油类(mg/L) 1 3 6 阴离子表面活性剂(mg/L) 0.5 1 7 总氮(以N计,mg/L) 15 20 8 氨氮(以N计,mg/L) 5(8) 8(15) 9 总磷(以P计,mg/L) 0.5 1 10 色度(稀释倍数,mg/L) 30 30 11 pH 6~9 12 类大肠菌群数(个/L) 103 104 注:下列情况下按去除率指标执行:当进水COD大于350 mg/L时,去除率应大于60%;BOD大于160 mg/L时,去除率应大于50%。氨氮对应行括号外数值为水温>12 ℃时的控制指标,括号内数值为水温≤12 ℃时的控制指标。 -
[1] YADAV J S S, SONG Y, PILLI S, et al. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides[J]. Biotechnology Advances,2015,33(6):756−774. doi: 10.1016/j.biotechadv.2015.07.002 [2] 王文琼, 张兰威, 易华西. 干酪乳清蛋白膜回收技术及膜污染问题研究进展[J]. 食品与发酵工业,2017,43(2):265−273. [WANG W Q, ZHANG L W, YI H X. Research progress of cheese whey protein membrane recovery technology and membrane pollution[J]. Food and Fermentation Industry,2017,43(2):265−273. doi: 10.13995/j.cnki.11-1802/ts.201702045 [3] GAURAV P, ABHIJEET J. Riboflavin as an internal marker for spoilage and adulteration detection in milk[J]. Food Chemistry,2021,357:129742−129742. doi: 10.1016/j.foodchem.2021.129742 [4] 杨晓丽, 翟丹云, 刘恭. 干酪素制作方法、应用现状及发展前景[J]. 农业科技与信息,2018(13):50−52. [YANG X L, ZHAI D Y, LIU G. Production methods, application status and development prospect of casein[J]. Information of Agricultural Science and Technology,2018(13):50−52. doi: 10.15979/j.cnki.cn62-1057/s.2018.13.019 [5] WOJCIECH D, RADOSłAW Ż, PAWEł M. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant[J]. Environmental Research,2017,153:135−139. doi: 10.1016/j.envres.2016.12.001 [6] MONTECCHIO D, YUAN Y, MALPEI F. Hydrogen production dynamic during cheese whey dark fermentation: New insights from modelization[J]. International Journal of Hydrogen Energy,2018,43(37):17588−17601. doi: 10.1016/j.ijhydene.2018.07.146 [7] LIU P, ZHENG Z, XU Q, et al. Valorization of dairy waste for enhanced D-lactic acid production at low cost[J]. Process Biochemistry,2018,71:18−22. doi: 10.1016/j.procbio.2018.05.014 [8] WENZEL J, FUENTES L, CABEZAS A, et al. Microbial fuel cell coupled to biohydrogen reactor: A feasible technology to increase energy yield from cheese whey[J]. Bioprocess and Biosystems Engineering,2017,40(6):807−819. doi: 10.1007/s00449-017-1746-6 [9] VIVEKANAND V, DANIEL G M, VINCENT G E, et al. Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage[J]. Bioresource Technology,2018,249:35−41. doi: 10.1016/j.biortech.2017.09.169 [10] VASSILEV I, HERNANDEZ P A, BATLLE V P, et al. Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide[J]. ACS Sustainable Chemistry & Engineering,2018,6(7):8485−8493. [11] ASUNIS F, De G G, DESSÌ P, et al. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation[J]. Journal of Environmental Management,2020,276:111240. doi: 10.1016/j.jenvman.2020.111240 [12] CARTER B G, FOEGEDING E A, DRAKE M A. Invited review: Astringency in whey protein beverages[J]. Journal of Dairy Science,2020,103(7):5793−5804. doi: 10.3168/jds.2020-18303 [13] ZOUARI A, BRIARD-BION V, GAUCHERON F, et al. Effect of pH on the physicochemical characteristics and the surface chemical composition of camel and bovine whey protein’s powders[J]. Food Chemistry,2020,333(prepublish):127514. [14] MICHAEL P R, GARY W. The biotechnological potential of whey[J]. Reviews in Environmntal Science and Biotechnology,2016,15(3):479−498. doi: 10.1007/s11157-016-9402-1 [15] DANIELLE C S, ADRIANO H D N R, STELA A U, et al. Buffalo milk composition, processing factors, whey constituents recovery and yield in manufacturing Mozzarella cheese[J]. Food Science and Technology,2017,38(2):328−334. doi: 10.1590/1678-457x.04317 [16] 王慧民. 干酪素复合材料的制备及其对亚甲基蓝吸附性能的研究[D]. 青岛: 青岛大学, 2021.WANG H M. Preparation of casein composites and their adsorption properties for methylene blue[D]. Qingdao: Qingdao University, 2021. [17] HANBIN L, KYEUN K N, DAESEUNG J, et al. Flammability characteristics and mechanical properties of casein based polymeric composites[J]. Polymers,2020,12(9):2078. doi: 10.3390/polym12092078 [18] ZHOU X F, ZHENG Y R, ZHONG Y, et al. Casein-hempseed protein complex via cross-link catalyzed by transglutaminase for improving structural, rheological, emulsifying and gelation properties[J]. Food Chemistry,2022,383:132366. doi: 10.1016/j.foodchem.2022.132366 [19] DIAS G J, HATHTHOTUWA T N, ROWLANDS D S, et al. Wool keratin-A novel dietary protein source: Nutritional value and toxicological assessment[J]. Food Chemistry,2022,383:132436. doi: 10.1016/j.foodchem.2022.132436 [20] 高彩雯, 罗龙龙, 任卫合, 等. 牛乳中A-2β-酪蛋白功效特点及其检测方法研究进展[J]. 黑龙江畜牧兽医,2022(3):19−24. [GAO C W, LUO L L, REN W H, et al. Research progress on efficacy characteristics of A-2β-casein in cow milk and its detection method[J]. Heilongjiang Animal Husbandry and Veterinary Medicine,2022(3):19−24. [21] 刘永峰, 张薇, 刘婷婷, 等. 乳蛋白中乳清蛋白与酪蛋白组成、特性及应用的研究进展[J]. 食品工业科技,2020,41(23):354−358. [LIU Y F, ZHANG W, LIU T T, et al. Research progress on composition, characteristics and application of whey protein and casein in milk protein[J]. Science and Technology of Food Industry,2020,41(23):354−358. doi: 10.13386/j.issn1002-0306.2019080220 [22] 张丽娜, 周鹏. 浅论乳糖功能研发应用[J]. 中国乳业,2020(4):84−88. [ZHANG L, ZHOU P. On the research, development and application of lactose function[J]. China Dairy Industry,2020(4):84−88. doi: 10.16172/j.cnki.114768.2020.04.018 [23] O'CONNELL J M, CALLAN J J, O'DOHERTY J V. The interaction between cereal type and lactose level on piglet performance and diet digestibility post weaning[J]. Animal Science,2005,81(2):265−269. doi: 10.1079/ASC42030265 [24] 胡茗昕. 乳糖旋光度研究[J]. 科技与创新,2016(3):95. [HU M X. Study on the rotation of lactose[J]. Technology and Innovation,2016(3):95. doi: 10.15913/j.cnki.kjycx.2016.03.095 [25] SINGH R P, PAYAL S, VIVEK S, et al. Traditional analytical approaches for lactose residues determination in lactose hydrolysed milks: A review[J]. LWT,2021,151:112069. doi: 10.1016/j.lwt.2021.112069 [26] PORTNOY M, BARBANO D M. Lactose: Use, measurement, and expression of results[J]. Journal of Dairy Science,2021,104(7):8314−8325. doi: 10.3168/jds.2020-18706 [27] 郑义. 低聚半乳糖的酶法合成及其功能特性的研究[D]. 北京: 北京工商大学, 2020.ZHENG Y. Enzymatic synthesis and functional characteristics of galactose oligomer[D]. Beijing: Beijing Technology and Business University, 2020. [28] 王蓓, 唐艳斌, 张炎, 等. 牛乳中乳清蛋白质的功能活性研究进展[J]. 中国食品学报,2021,21(9):366−373. [WANG B, TANG Y B, ZHANG Y, et al. Research progress on functional activity of whey protein in milk[J]. Chinese Journal of Food,2021,21(9):366−373. doi: 10.16429/j.1009-7848.2021.09.040 [29] RAHIMI A S, OTZEN D E, MAHMOODI N M, et al. Adsorption of azo dyes by a novel bio-nanocomposite based on whey protein nanofibrils and nano-clay: Equilibrium isotherm and kinetic modeling[J]. Journal of Colloid and Interface Science,2021,602:490−503. doi: 10.1016/j.jcis.2021.05.174 [30] 陈泽珊. 乳清蛋白的功能特性分析及在乳制品中的应用研究[J]. 食品安全导刊,2021(30):186−187. [CHEN Z S. Functional characteristics of whey protein and its application in dairy products[J]. Food Safety Guide,2021(30):186−187. doi: 10.3969/j.issn.1674-0270.2021.30.spaqdk202130107 [31] FOURNAISE T, BURGAIN J, PERROUD-THOMASSIN C, et al. Impact of the whey protein/casein ratio on the reconstitution and flow properties of spray-dried dairy protein powders[J]. Powder Technology,2021,391:275−281. doi: 10.1016/j.powtec.2021.06.026 [32] 宋博, 张雨萌, 逄晓阳, 等. 膜技术在乳品加工行业中的研究进展[J]. 乳业科学与技术,2021,44(6):39−44. [SONG B, ZHANG Y M, QI X Y, et al. Research progress of membrane technology in dairy processing industry[J]. Dairy Science and Technology,2021,44(6):39−44. doi: 10.15922/j.cnki.jdst.2021.06.008 [33] 邓永飞, 刘涛, 吴海铨, 等. 食品工业废水处理技术研究进展[J]. 工业水处理,2021,41(10):1−7, 13. [DENG Y F, LIU T, WU H Q, et al. Research progress on wastewater treatment technology in food industry[J]. Industrial Water Treatment,2021,41(10):1−7, 13. doi: 10.19965/j.cnki.iwt.2020-0815 [34] 姜涛, 王帅, 单德臣, 等. 对膜技术在乳品废水处理中应用的几点探讨[J]. 当代化工研究,2021(1):105−106. [JIANG T, WANG S, SHAN D C, et al. Discussion on the application of membrane technology in dairy wastewater treatment[J]. Contemporary Chemical Research,2021(1):105−106. doi: 10.3969/j.issn.1672-8114.2021.01.048 [35] 张宏杰. 耦合膜分离技术在低乳糖奶粉方面的应用[D]. 杭州: 浙江工业大学, 2020.ZHANG H J. Application of coupling membrane separation technology in low lactose milk powder[D]. Hangzhou: Zhejiang University of Technology, 2020. [36] 房天琪. 液态浓缩乳清蛋白的制备与功能特性修饰及应用研究[D]. 沈阳: 吉林大学, 2019.FANG T Q. Preparation and functional characteristic modification and application of liquid whey protein concentrate[D]. Shenyang: Jilin University, 2019. [37] 齐鲁. 渗透汽化膜的水处理应用研究[D]. 北京: 北京化工大学, 2021.QI L. Application of water treatment of permeable vaporization membrane[D]. Beijing: Beijing University of Chemical Technology, 2021. [38] 卫新来. 电渗析技术在化学品分离纯化中的应用研究[D]. 合肥: 中国科学技术大学, 2021.WEI X L. Application of electrodialysis technology in chemical separation and purification[D]. Hefei: University of Science and Technology of China, 2021. [39] 王祎. 人乳、牛乳低聚糖分离纯化及促进Lactobacillus fermentum CECT 5716生长研究[D]. 天津: 天津科技大学, 2020WANG Y. Isolation and purification of human milk and cow milk oligosaccharides and promotion of the growth of Lactobacillus fermentum CECT 5716[D]. Tianjin: Tianjin University of Science and Technology, 2020. [40] 刘选东. 基于膜分离技术的低乳糖牛乳制备[D]. 合肥: 安徽农业大学, 2016.LIU X D. Preparation of low lactose bovine milk based on membrane separation technology[D]. Hefei: Anhui Agricultural University, 2016. [41] MANSOR E S, A LI E A, SHABAN A M. Tight ultrafiltration polyether sulfone membrane for cheese whey wastewater treatment[J]. Chemical Engineering Journal,2021,407:127175. doi: 10.1016/j.cej.2020.127175 [42] MIAO R, MA B, LI P, et al. Mitigation mechanism of ozonation in the casein fouling of ultrafiltration membranes: Possible application in dairy wastewater treatment[J]. Journal of Membrane Science, 2021, 629: 119307. [43] 李亚萍, 罗丽, 崔广智, 等. 干酪素生产废水回收工艺的优化研究[J]. 甘肃科技纵横,2021,50(1):28−30. [LI Y P, LUO L, CUI G Z, et al. Study on optimization of recovery process of casein production wastewater[J]. Gansu Science and Technology,2021,50(1):28−30. [44] 甘伯中, 敏文祥, 侯晓东, 等. 在干酪素生产废水中应用膜滤连续提取的方法: 中国, CN100595207C[P]. 2010-03-24.GAN B Z, MIN W X, HOU X D, et al. Method of continuous extraction of membrane filtration in casein production wastewater: China, CN100595207C[P]. 2010-03-24. [45] ANDRADE L H, MENDES F D S, ESPINDOLA J C, et al. Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor[J]. Separation and Purification Technology,2014,126:21−29. doi: 10.1016/j.seppur.2014.01.056 [46] BOBROVA A V, OSTRETSOVA N G. Prospects for use of nanofiltration buttermilk and whey concentrates in the technology of fermented milk products with an increased mass fraction of protein[J]. IOP Conference Series:Earth and Environmental Science,2021,624(1):012137. doi: 10.1088/1755-1315/624/1/012137 [47] SANGITA B, SUBHASHIS G, SIDDHARTHA D, et al. Studies on ultrafiltration of casein whey using a rotating disk module: Effects of pH and membrane disk rotation[J]. Desalination,2005,195(1):95−108. [48] GALANAKIS C M, CHASIOTIS S, BOTSARIS G, et al. Separation and recovery of proteins and sugars from Halloumi cheese whey[J]. Food Research International,2014,65:477−483. doi: 10.1016/j.foodres.2014.03.060 [49] 余群力, 韩玲, 敏文祥. 一种从曲拉干酪素工业废弃液中回收乳清蛋白的工艺: 中国, 200610105264[P]. 2007-07-11.YU Q L, HAN L, MIN W X. A process for recovering whey protein from the waste liquid of kotra casein industry: China, 200610105264[P]. 2007-07-11. [50] KOYUNCU I, TURAN M, TOPACIK D, et al. Application of low pressure nanofiltration membranes for the recovery and reuse of dairy industry effluents[J]. Water Science and Technology,2000,41(1):213−221. doi: 10.2166/wst.2000.0031 [51] 徐蕴桃, 孙颜君, 刘振民, 等. 酪乳的成分, 应用及酪乳中乳脂肪球膜分离技术研究进展[J]. 食品与发酵工业, 2021, 47(24): 314-322.XU Y T, SUN Y J, LIU Z M, et al. Research progress on composition, application and separation technology of milk fat globule membrane in buttermilk[J]. Food and Fermentation Industry,2021, 47(24): 314-322. [52] RAJESHREE A K, PARAG R G. Optimization of ultrafiltration of whey using Taguchi method for maximizing recovery of lactose[J]. Separation and Purification Technology,2020:248. [53] 李涛. 从牛奶乳清液中提取乳糖与异构化乳糖的研究[J]. 中国乳业,2004(12):50−51. [LI T. Study on the extraction of lactose and isomerized lactose from milk whey[J]. China Dairy Industry,2004(12):50−51. doi: 10.3969/j.issn.1671-4393.2004.12.021 [54] 王海, 张永锋, 马宁, 等. 纳滤技术回收乳制品废水中乳糖的研究[J]. 化学工程,2009,37(4):45−48. [WANG H, ZHANG Y F, MA N, et al. Study on lactose recovery from dairy wastewater by nanofiltration technology[J]. Chemical Engineering,2009,37(4):45−48. doi: 10.3969/j.issn.1005-9954.2009.04.013 [55] ROSANE R D S, ROSÂNGELA B, SÍLVIO C D C, et al. Recovery and purification of lactose from whey[J]. Chemical Engineering & Processing: Process Intensification,2010,49(11):1137−1143. [56] 袁兆丰, 杨秀梅, 王丹. 乳制品中A1β-酪蛋白, A2β-酪蛋白含量的测定[J]. 中国乳业,2022(4):77−81. [YUAN Z F, YANG X M, WANG D. Determination of A1β-casein and A2β-casein content in dairy products[J]. China Dairy,2022(4):77−81. doi: 10.12377/1671-4393.22.04.15 [57] 洪和琪. 乳制品废水处理技术研究进展[J]. 沈阳大学学报(自然科学版),2016,28(3):203−205. [HONG H Q. Research progress on dairy wastewater treatment technology[J]. Journal of Shenyang University (Natural Science Edition),2016,28(3):203−205. doi: 10.16103/j.cnki.21-1583/n.2016.03.007 [58] 王京. 絮凝沉降处理乳业废水的研究[J]. 北方环境,2010,22(6):65−67. [WANG J. Study on the treatment of dairy wastewater by flocculation and sedimentation[J]. Northern Environment,2010,22(6):65−67. [59] ADEL A, ASSIA K, MARWA B, et al. Treatment of dairy wastewater by electrocoagulation using A-U4G (2017-Al) alloy and pure aluminum as electrode material[J]. Euro-Mediterranean Journal for Environmental Integration,2021,6(1):1−10. doi: 10.1007/s41207-020-00207-6 [60] MARKOU V, KONTOGIANNI M C, FRONTISTIS Z, et al. Electrochemical treatment of biologically pre-treated dairy wastewater using dimensionally stable anodes[J]. Journal of Environmental Management,2017,202(1):217−224. [61] 晁雷, 赵晓光, 李晓东, 等. 国内外乳制品工业废水生物处理技术研究进展[J]. 江苏农业科学,2014,42(1):1−4. [CHAO L, ZHAO X G, LI X D, et al. Research progress of biological treatment technology of dairy industry wastewater at home and abroad[J]. Jiangsu Agricultural Science,2014,42(1):1−4. doi: 10.3969/j.issn.1002-1302.2014.01.001 [62] HEAVEN M W, WILD K, VERHEYEN V, et al. Seasonal and wastewater stream variation of trace organic compounds in a dairy processing plant aerobic bioreactor[J]. Bioresource Technology,2011,102(17):7727−7736. doi: 10.1016/j.biortech.2011.06.002 [63] BISWAS T, BHUSHAN S, PRAJAPATI S K, et al. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production[J]. Journal of Environmental Management,2021,286:112196. doi: 10.1016/j.jenvman.2021.112196 [64] RIVAS J, PRAZERES A R, CARVALHO F, et al. Treatment of cheese whey wastewater: Combined coagulation-flocculation and aerobic biodegradation[J]. Journal of Agricultural and Food Chemistry,2010,58(13):7871−7877. doi: 10.1021/jf100602j [65] CRUZ-SALOMÓN A, RÍOS-VALDOVINOS E, POLA-ALBORES F, et al. Treatment of cheese whey wastewater using an expanded granular sludge bed (EGSB) bioreactor with biomethane production[J]. Processes,2020,8(8):931. doi: 10.3390/pr8080931 [66] KIM J, CHOI H, LEE C. Formation and characterization of conductive magnetite-embedded granules in up flow anaerobic sludge blanket reactor treating dairy wastewater[J] Bioresource Technology, 2021, 345: 126492-126492. [67] RAMOS L R, DE M C A, SOARES L A, et al. Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT[J]. Bioprocess and Biosystems Engineering,2020,43(4):673−684. doi: 10.1007/s00449-019-02265-9 [68] CHARALAMBOUS P, SHIN J, SHIN S G, et al. Anaerobic digestion of industrial dairy wastewater and cheese whey: Performance of internal circulation bioreactor and laboratory batch test at pH5~6[J]. Renewable Energy,2020,147:1−10. doi: 10.1016/j.renene.2019.08.091 [69] STAMATELATOU K, GIANTSIOU N, DIAMANTIS V, et al. Biogas production from cheese whey wastewater: Laboratory-and full-scale studies[J]. Water Science and Technology,2014,69(6):1320−1325. doi: 10.2166/wst.2014.029 [70] 张博, 邓蕾, 钱江枰, 等. 厌氧生物处理技术的研究进展及其绿色化发展[J]. 浙江化工,2020,51(10):42−46,50. [ZHANG B, DENG L, QIAN J L, et al. Research progress and green development of anaerobic biological treatment technology[J]. Zhejiang Chemical Industry,2020,51(10):42−46,50. doi: 10.3969/j.issn.1006-4184.2020.10.009 [71] KARADAG D, KÖROĞLU O E, OZKAYA B, et al. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater[J]. Process Biochemistry,2015,50(2):262−271. doi: 10.1016/j.procbio.2014.11.005 [72] PAÇAL M, SEMERCI N, ÇALLI B. Treatment of synthetic wastewater and cheese whey by the anaerobic dynamic membrane bioreactor[J]. Environmental Science and Pollution Research,2019,26(32):32942−32956. doi: 10.1007/s11356-019-06397-z [73] 李鹏芳, 刘梦, 张科亭, 等. 厌氧膜生物反应器对乳品废水处理效果的研究[J]. 四川环境,2018,37(5):12−18. [LI P F, LIU M, ZHANG K T, et al. Study on the effect of anaerobic membrane bioreactor on the treatment of dairy wastewater[J]. Sichuan Environment,,2018,37(5):12−18. [74] AL-SANED A J O, KITAFA B A, BADDAY A S. Microbial fuel cells (MFC) in the treatment of dairy wastewater[J]. IOP Conference Series:Materials Science and Engineering,2021,1067(1):012073. doi: 10.1088/1757-899X/1067/1/012073 [75] SREEDHARAN S, PAWELS R. Feasibility study on treatment of coconut industry wastewater and bioenergy production using microbial fuel cell (MFC)[J]. International Journal of Environmental Science and Technology,2021:1−10. [76] HUANG J P, LIU L L, SHAO Y M, et al. Study on cultivation and morphology of granular sludge in improved methanogenic UASB[J]. Applied Mechanics and Materials,2012,1976(209-211):1152−1157. [77] 乌日汗. 乳清饮料抑制高血脂功能及其产业化研究[D]. 呼和浩特: 内蒙古大学, 2021.WU R H. Study on the function of whey beverage in inhibiting hyperlipidemia and its industrialization[D]. Hohhot: Inner Mongolia University, 2021. [78] ZHANG Y, YAN L, CHI L, et al. Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent[J]. Journal of Environmental Sciences,2008,20(6):658−663. doi: 10.1016/S1001-0742(08)62109-9 [79] 张超杰, 杨春燕, 殷昊, 等. 乳制品加工废水的深度处理及资源回用研究进展与策略[J/OL]. 食品工业科技: 1−14[2022-02-15]. http://kns.cnki.net/kcms/detail/11.1759.TS.20220210.1551.003.html.ZHANG C J, YANG C Y, YIN H, et al. Research progress and strategy of advanced treatment and resource reuse of dairy processing wastewater[J/OL]. Food Industry Technology: 1−14[2022-02-15]. http://kns.cnki.net/kcms/detail/11.1759.TS.20220210.1551.003.html. [80] 于容朴, 孙迎雪, 胡洪营. 乳品行业废水处理及中水回用[J]. 河南科技,2020(23):99−101. [YU S P, SUN Y X, HU H Y. Wastewater treatment and reclaimed water reuse in dairy industry[J]. Henan Science and Technology,2020(23):99−101. [81] TELLABATI V M, SHAH R K. Microbiological study of synbiotic fermented whey drink[J]. Research Journal of Animal Husbandry & Dairy Science,2017,8(1):1−7. [82] VIDRA A, TÓTH A J, NÉMETH Á. Complex whey utilization: The propionic acid alternative[J]. Liquid Waste Recovery 2017, 2(1): 9-12. [83] PANDEY A, SRIVASTAVA S, RAI P, et al. Cheese whey to biohydrogen and useful organic acids: A non-pathogenic microbial treatment by L. acidophilus[J]. Scientific Reports,2019,9(1):1−9. doi: 10.1038/s41598-018-37186-2 [84] 岳岩, 杨洁, 陈啸, 等. 不同品种乳清粉的饲料加工特性差异分析[J]. 饲料工业,2016,37(11):10−15. [YUE Y, YANG J, CHEN X, et al. Analysis on differences of feed processing characteristics of different varieties of whey powder[J]. Feed Industry,2016,37(11):10−15. doi: 10.13302/j.cnki.fi.2016.11.002 [85] SAMPAIO F C, DE F J T, DA S M F, et al. Cheese whey permeate fermentation by Kluyveromyces lactis: A combined approach to wastewater treatment and bioethanol production[J]. Environmental Technology,2019,41(24):1−26. [86] AZBAR N, DOKGOZ F T, KESKIN T, et al. Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions[J]. International Journal of Green Energy,2009,6(2):192−200. doi: 10.1080/15435070902785027 [87] PENDÓN M D, MADEIRA J V, ROMANIN D E, et al. A biorefinery concept for the production of fuel ethanol, probiotic yeast, and whey protein from a by-product of the cheese industry[J]. Applied Microbiology and Biotechnology,2021,105(9):1−13. [88] KOUTINAS A A, VLYSIDIS A, PLEISSNER D, et al. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers[J]. Chemical Society Reviews,2014,43(8):2587−627. doi: 10.1039/c3cs60293a [89] ESCALANTE-HERNÁNDEZ H, CASTRO-MOLANO L, BESSON V, et al. Feasibility of the anaerobic digestion of cheese whey in a Plug Flow Reactor (PFR) under local conditions[J]. Ingeniería, Investigación Y Tecnología,2017,18(3):264−277. [90] SOFOKLEOUS M, CHRISTOFI A, MALAMIS D, et al. Bioethanol and biogas production: An alternative valorisation pathway for green waste[J]. Chemosphere,2022,296:133970−133970. doi: 10.1016/j.chemosphere.2022.133970 [91] MABROUKI J, ABBASSI M A, KHIARI B, et al. The dairy biorefinery: Integrating treatment process for Tunisian cheese whey valorization[J]. Chemosphere,2022,293:133567−133567. doi: 10.1016/j.chemosphere.2022.133567 [92] CHANDRA R, CASTILLO-ZACARIAS C, DELGADO P, et al. A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index[J]. Journal of Cleaner Production,2018,183:1184−1196. doi: 10.1016/j.jclepro.2018.02.124 [93] TEJAYADI S, CHERYAN M. Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor[J]. Applied Microbiology and Biotechnology,1995,43(2):242−248. doi: 10.1007/BF00172819 [94] PIRES A F, MARNOTES N G, BELLA A, et al. Use of ultrafiltrated cow's whey for the production of whey cheese with Kefir or probiotics[J]. Journal of the Science of Food and Agriculture,2020,101(2):555−563. [95] MORALES J, CHOI J S, KIM D S. Production rate of propionic acid in fermentation of cheese whey with enzyme inhibitors[J]. Environmental Progress & Sustainable Energy,2006,25(3):228−234. [96] 吕海棠, 韩爱霞, 王兆谦, 等. 乳清发酵法制备乙酸[J]. 安徽农业科学,2011,39(32):20038−20040. [LÜ H T, HAN A X, WANG Z Q, et al. Preparation of acetic acid by whey fermentation[J]. Anhui Agricultural Science,2011,39(32):20038−20040. doi: 10.3969/j.issn.0517-6611.2011.32.146 [97] BARANWAL J, BARSE B, FAIS A, et al. Biopolymer: A sustainable material for food and medical applications[J]. Polymers,2022,14(5):983. doi: 10.3390/polym14050983 [98] KHORASANI R, KHODAPARASTI M S, TAVAKOLI O. Hydrogen production from dairy wastewater using catalytic supercritical water gasification: Mechanism and reaction pathway[J]. International Journal of Hydrogen Energy,2021,46(43):22368−22384. doi: 10.1016/j.ijhydene.2021.04.089 [99] GEORGE A, SANJAY M R, SRISUK R, et al. A comprehensive review on chemical properties and applications of biopolymers and their composites[J]. International Journal of Biological Macromolecules,2020,154:329−338. doi: 10.1016/j.ijbiomac.2020.03.120 [100] DAS S, MAJUMDER A, SHUKLA V, et al. Biosynthesis of poly (3-hydroxybutyrate) from cheese whey by Bacillus megaterium NCIM 5472[J]. Journal of Polymers and the Environment,2018,26(11):4176−4187. doi: 10.1007/s10924-018-1288-2 [101] XIA J, HE J, XU J, et al. Direct conversion of cheese whey to polymalic acid by mixed culture of Aureobasidium pullulans and permeabilized Kluyveromyces marxianus[J]. Bioresource Technology,2021,337:125443. doi: 10.1016/j.biortech.2021.125443 [102] FANG T Q, GUO M R. Physicochemical, texture properties, and microstructure of yogurt using polymerized whey protein directly prepared from cheese whey as a thickening agent[J]. Journal of Dairy Science,2019,102(9):7884−7894. doi: 10.3168/jds.2018-16188 [103] SIRACUSA V, KARPOVA S, OLKHOV A, et al. Gas transport phenomena and polymer dynamics in PHB/PLA blend films as potential packaging materials[J]. Polymers,2020,12(3):647. doi: 10.3390/polym12030647 [104] SAHA S, MANDAL N K, MANDAL T. The bacterial biodegradation of soil lecithin into biofertilizer catalyzed by plant micro nutrients-molybdenum, manganese, and zinc ions[J]. Biocatalysis and Agricultural Biotechnology,2019,20:101201. doi: 10.1016/j.bcab.2019.101201 [105] HALDER N, GOGOI M, SHARMIN J, et al. Microbial consortium based conversion of dairy effluent into biofertilizer[J]. Journal of Hazardous, Toxic, and Radioactive Waste,2020,24(1):04019039. doi: 10.1061/(ASCE)HZ.2153-5515.0000486 -