• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

基于适配体-阳离子化合物诱导纳米金聚集比色法快速检测苏丹红

刘长勇 卢春霞 陈霞 唐宗贵 党富民

刘长勇,卢春霞,陈霞,等. 基于适配体-阳离子化合物诱导纳米金聚集比色法快速检测苏丹红[J]. 食品工业科技,2023,44(3):279−285. doi:  10.13386/j.issn1002-0306.2022030314
引用本文: 刘长勇,卢春霞,陈霞,等. 基于适配体-阳离子化合物诱导纳米金聚集比色法快速检测苏丹红[J]. 食品工业科技,2023,44(3):279−285. doi:  10.13386/j.issn1002-0306.2022030314
LIU Changyong, LU Chunxia, CHEN Xia, et al. Colorimetric Detection of Sudan Based on the Aptamer and Cationic Compound Induced Gold Nanoparticles Aggregation[J]. Science and Technology of Food Industry, 2023, 44(3): 279−285. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030314
Citation: LIU Changyong, LU Chunxia, CHEN Xia, et al. Colorimetric Detection of Sudan Based on the Aptamer and Cationic Compound Induced Gold Nanoparticles Aggregation[J]. Science and Technology of Food Industry, 2023, 44(3): 279−285. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030314

基于适配体-阳离子化合物诱导纳米金聚集比色法快速检测苏丹红

doi: 10.13386/j.issn1002-0306.2022030314
基金项目: 长江师范学院科研资助项目;兵团农产品质量安全监管项目(BTNA202203)。
详细信息
    作者简介:

    刘长勇(1976−),男,本科,高级实验师,研究方向:食品质量安全,E-mail:876857355@qq.com

    通讯作者:

    卢春霞(1978−),女,博士,教授,研究方向:食品质量安全,E-mail:shzlcx2002@163.com

  • 中图分类号: O657.3

Colorimetric Detection of Sudan Based on the Aptamer and Cationic Compound Induced Gold Nanoparticles Aggregation

  • 摘要: 本研究以苏丹红Ⅲ适配体为识别元件,以未修饰的纳米金传感信号,以聚二烯丙基二甲基氯化铵(PDDA)作为纳米金聚集的诱导剂,构建了一种简单、经济、快速的苏丹红比色检测方法。在优化条件下评估本方法的检测灵敏度、准确性和特异性,最后应用于食品中苏丹红快速检测,并将检测结果与国标法(GB/T 19681-2005)对比验证。结果显示,在PDDA浓度20 nmol/L、适配体浓度5 nmol/L、反应时间4 min等优化条件下,纳米金吸光度比值(A650nm/A530nm)与苏丹红III浓度呈良好线性关系(R=0.986),线性检测范围为3.13~50 ng/mL,可视化检测限为3.13 ng/mL,检测时间约为5 min。特异性分析显示,本方法对苏丹红I、II、III和IV有高的特异性,与柠檬黄、日落黄、分散橙11等无交叉反应。将本方法应用于食品中苏丹红检测,加标回收率为85.4%~102.5%,相对标准偏差为3.37%~6.75%。本方法具有操作简便、快速、结果易读等优点,适用于批量样品中苏丹红的现场快速检测。
  • 图  1  纳米金紫外吸收光谱图(A)和透射电镜图(B)

    Figure  1.  Ultraviolet absorption spectra (A) and TEM images (B) of the gold nanoparticles

    图  2  基于适配体-PDDA诱导纳米金聚集比色检测苏丹红示意图

    Figure  2.  Schematic of colorimetric assay base on the aptamer and PDDA induced gold nanoparticles aggregation for detection of Sudan dyes

    图  3  不同条件下检测体系紫外吸收光图谱

    Figure  3.  UV absorption spectra of the detection system under different conditions

    注:a:AuNPs;b:AuNPs+适配体5 nmol/L+PDDA 20 nmol/L;c:AuNPs+PDDA 20 nmol/L;d:AuNPs+适配体5 nmol/L+苏丹红III 200 ng/mL+PDDA 20 nmol/L。

    图  4  PDDA浓度优化

    Figure  4.  The optimization of PDDA concentration

    图  5  适配体浓度优化

    Figure  5.  The optimum of aptamer concentration

    图  6  苏丹红与适配体反应时间优化

    Figure  6.  The optimization of reaction time between Sudan dyes and aptamer

    注:对照组1:AuNPs+适配体5 nmol/L+PDDA 20 nmol/L;对照组2:AuNPs+PDDA 20 nmol/L;图8同。

    图  7  不同苏丹红Ⅲ浓度条件下体系的紫外光谱图(A)和标准曲线图(B)

    Figure  7.  UV-Vis spectrum of aptasensor at different concentrations of Sudan III (A) and the calibration plot of the absorbance versus concentration of Sudan III (B)

    图  8  苏丹红及结构类似物在相同检测条件下的紫外光谱图

    Figure  8.  UV-vis spectrum of Sudan and analogue at same detection conditions

    表  1  苏丹红检测方法比较

    Table  1.   Comparison of methods reported for detection of Sudan dyes

    分析方法分析物识别元件检测限线性范围检测时间参考文献
    HPLCSudan I~IV-0.33~2.27 μg/g0.5~5.0 μg/mL-[3]
    HPLCSudanI~IV-10 ng/g--[18]
    MIP-HPLCSudan I~IVMIP5~9 ng/g31~4000 ng/g-[20]
    HPL-MS/MSSudan I~IV-0.2~1.0 ng/g1~100 ng/mL-[21]
    GC-MS/MSSudan III-2~10 ng/g0.1~4.0 μg/mL-[22]
    ELISASudan III抗体0.1~0.8 ng/mL-105 min[23]
    电化学传感器SudanI-0.093 μmol/L0.3~700 μmol/L-[24]
    比色SudanIII适配体2.15 ng/mL3.1~50 ng/mL5 min本方法
    注:-代表文献未涉及该部分内容。
    下载: 导出CSV

    表  2  本方法加标回收率(n=3)

    Table  2.   The recovery of the proposed method (n=3)

    样品添加量(ng/g)检测值(ng/g)加标回收率(%)相对标准偏差(%)
    辣椒粉108.83±0.4588.35.09
    5046.20±1.7692.43.81
    10093.80±5.2293.85.56
    辣椒酱109.19±0.6291.96.75
    5045.40±1.5390.83.37
    100102.50±6.35102.56.20
    番茄酱108.54±0.3885.44.45
    5044.50±2.0389.04.56
    10094.60±5.5794.65.88
    下载: 导出CSV
  • [1] TING X U, WEI K Y, WANG J, et al. Development of an enzyme linked immunosorbent assay specific to Sudan red I[J]. Analytical Biochemistry,2010,405:41−49. doi:  10.1016/j.ab.2010.05.031
    [2] 张卫明, 赵伯涛, 卢庆国, 等. 基于辣椒红素提取的辣椒原料生产质量安全控制技术[J]. 中国野生植物资源,2013,32(5):55−58. [ZHANG W M, ZHAO B T, LU Q G, et al. The quality and safety control technology of hot pepper based on the extraction of capsanthin[J]. Chinese Wild Plant Resources,2013,32(5):55−58. doi:  10.3969/j.issn.1006-9690.2013.05.014
    [3] 钟丽琪, 曹进, 钱和, 等. 高效液相色谱法测定食品中可能掺杂的16种工业染料[J]. 食品科学,2021,42(22):305−310. [ZHONG L Q, CAO J, QIAN H, et al. Determination of 16 industrial dyes illegally addition in food by high performance liquid chromatography[J]. Food Science,2021,42(22):305−310. doi:  10.7506/spkx1002-6630-20201127-286
    [4] PHAM T C, DANG X T, NGUYEN B N, et al. Determination of Sudan I and II in food by high-performance liquid chromatography after simultaneous adsorption on nanosilica[J]. Journal of Analytical Methods in Chemistry,2021(1):1−9.
    [5] SHAN W C, XI J Z, SUN J, et al. Production of the monoclonal antibody against Sudan 4 for multi-immunoassay of Sudan dyes in egg[J]. Food Control,2012,27(1):146−152. doi:  10.1016/j.foodcont.2012.03.017
    [6] LI J B, YANG Y Q, WANG J H, et al. Resonance rayleigh scattering detection of the epidermal growth factor receptor based on an aptamer-functionalized gold-nanoparticle probe[J]. Analytical Methods,2018,10:2910−2916. doi:  10.1039/C8AY00860D
    [7] LU C X, LIU C B, SHI G Q. Colorimetric enzyme-linked aptamer assay utilizing hybridization chain reaction for determination of bovine pregnancy-associated glycoproteins[J]. Microchimica Acta,2020,187:316−324. doi:  10.1007/s00604-020-04301-y
    [8] RUBAYE A A, NABOK A, CATANANTE G, et al. Detection of Ochratoxin A in aptamer assay using total internal reflection ellipsometry[J]. Sensor Actuat B-Chem,2018,263:48−251.
    [9] 王红旗, 张玲, 刘冬梅, 等. 小分子靶标核酸适配体研究进展[J]. 食品与生物技术学报,2015,34(8):790−798. [WANG H Q, ZHANG L, LIU D M, et al. Research progress of aptamer for small molecule target[J]. Journal of Food Science and Biotechnology,2015,34(8):790−798. doi:  10.3969/j.issn.1673-1689.2015.08.002
    [10] XU X M, MA X Y, WAND H T, et al. Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers[J]. Microchimica Acta,2018,185:325−332. doi:  10.1007/s00604-018-2852-0
    [11] LI D L, LIU L Y, HUANG Q L, et al. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria[J]. World Journal of Microbiology & Biotechnology,2021,37:45.
    [12] MEHLHORN A, RAHIMI P, JOSEPH Y. Aptamer-based biosensors for antibiotic detection: A review[J]. Biosensors 2018, 8: 54.
    [13] SCHÜLING T, EILERS A, SCHEPER T, et al. Aptamer-based lateral flow assays[J]. AIMS Bioengineering,2018,5(2):78−102. doi:  10.3934/bioeng.2018.2.78
    [14] KIM Y S, RASTON N H A, GU M B. Aptamer-based nanobiosensors[J]. Biosensors & Bioelectronics,2016,76:2−19.
    [15] YUAN, Q, LU D Q, ZHANG X B, et al. Aptamer-conjugated optical nanomaterials for bioanalysis[J]. Trac-Trends in Analytical Chemistry,2012,39:72−86. doi:  10.1016/j.trac.2012.05.010
    [16] WANG Y, LI J, QIAO P, et al. Screening and application of a new aptamer for the rapid detection of Sudan dye III[J]. European Journal of Lipid Science and Technology,2018,120(6):1700112. doi:  10.1002/ejlt.201700112
    [17] 卢春霞, 李红敏, 孙凤霞, 等. 基于适配体识别的侧向层析法快速检测单核细胞增生李斯特氏菌[J]. 食品与生物技术学报,2020,4:85−92. [LU C X, LI H M, SUN F X, et al. Aptamer-based lateral flow strip for rapid detection of Listeria monocytogenes[J]. Journal of Food Science and Biotechnology,2020,4:85−92. doi:  10.3969/j.issn.1673-1689.2020.04.012
    [18] 国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T 19681-2005食品中苏丹红燃料的检测方法高效液相色谱法[S]. 北京: 中国标准出版社, 2005.

    Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 19681-2005 The method for the determination of Sudan dyes in foods-high performance liquid chromatography[S]. Beijing: Standards Press of China, 2005.
    [19] OFIR Y, SAMANTA B, ROTELLO V M. Polymer and biopolymer mediated self-assembly of gold nanoparticles[J]. Chemical Society Reviews,2008,37:1814−1825. doi:  10.1039/b712689c
    [20] YAN H Y, QIAO J D, PEI Y N, et al. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds[J]. Food Chemistry,2012,132:649−654. doi:  10.1016/j.foodchem.2011.10.105
    [21] 杨光勇, 薛光, 郭金喜, 等. 超高效合相色谱-串联质谱法测定中药材中10种偶氮染料[J]. 质谱学报,2021,42(6):1509−1067. [YANG G Y, XUE G, GUO J X, et al. Determination of ten kinds of azo dyes in Chinese medicinal materials by ultra performance convergence chromatography-tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2021,42(6):1509−1067.
    [22] 张胜帮, 韩超, 刘继东, 等. 食品中苏丹红I~IV及对位红的GC-MS/SIM法研究[J]. 中国食品学报,2009,9(2):187−193. [ZHANG S B, HAN C, LIU J D, et al. Study on simultaneous determination of sudanI-Sudan IV and para red in food by GC-MS/SIM[J]. Journal of Chinese Institute of Food Science and Technology,2009,9(2):187−193. doi:  10.3969/j.issn.1009-7848.2009.02.031
    [23] QI Y H, SHAN W C, LIU Y Z, et al. Production of the polyclonal antibody against Sudan 3 and immunoassay of Sudan dyes in food samples[J]. Journal of Agricultural and Food Chemistry,2012,60:2116−2122. doi:  10.1021/jf300026x
    [24] EBRAHIMI-TAZANGI F, BEITOLLAHI H, HEKMATARA H, et al. Design of a new electrochemical sensor based on the CuO/GO nanocomposites: Simultaneous determination of Sudan I and bisphenol A[J]. Journal of the Iranian Chemical Society,2021,18:191−199. doi:  10.1007/s13738-020-02016-8
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海