• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

柠檬皮多酚成分分析及其对胰岛素抵抗HepG2细胞糖代谢的影响

王瑞雪 张筠 崔艳伟 付红岩 房一明 张彦军 初众

王瑞雪,张筠,崔艳伟,等. 柠檬皮多酚成分分析及其对胰岛素抵抗HepG2细胞糖代谢的影响[J]. 食品工业科技,2022,43(23):310−317. doi:  10.13386/j.issn1002-0306.2022030281
引用本文: 王瑞雪,张筠,崔艳伟,等. 柠檬皮多酚成分分析及其对胰岛素抵抗HepG2细胞糖代谢的影响[J]. 食品工业科技,2022,43(23):310−317. doi:  10.13386/j.issn1002-0306.2022030281
WANG Ruixue, ZHANG Yun, CUI Yanwei, et al. Analysis of Polyphenols from Lemon Peel and Its Effect on Glucose Metabolism in Insulin-resistant HepG2 Cells[J]. Science and Technology of Food Industry, 2022, 43(23): 310−317. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030281
Citation: WANG Ruixue, ZHANG Yun, CUI Yanwei, et al. Analysis of Polyphenols from Lemon Peel and Its Effect on Glucose Metabolism in Insulin-resistant HepG2 Cells[J]. Science and Technology of Food Industry, 2022, 43(23): 310−317. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030281

柠檬皮多酚成分分析及其对胰岛素抵抗HepG2细胞糖代谢的影响

doi: 10.13386/j.issn1002-0306.2022030281
基金项目: 农业农村部香辛饮料作物遗传资源利用重点实验室、海南省香料饮料作物工程技术研究中心开放课题资助(2019xys003);黑龙江东方学院科研创新团队建设项目(HDFKYTD202104)。
详细信息
    作者简介:

    王瑞雪(1998−),女,硕士研究生,研究方向:食品功能性,E-mail:1186615232@qq.com

    通讯作者:

    张筠(1976−),女,博士,教授,研究方向:食品功能性,E-mail:forever19@sina.com

    初众(1981−),男,硕士,研究员,研究方向:食品工程,E-mail:cz809@163.com

  • 中图分类号: TQ283

Analysis of Polyphenols from Lemon Peel and Its Effect on Glucose Metabolism in Insulin-resistant HepG2 Cells

  • 摘要: 目的:探究柠檬皮多酚(Limon Peel Polyphenols,LPP)的组成成分,并研究其对胰岛素抵抗(Insulin Resistance,IR)的HepG2细胞糖代谢的影响。方法:采用高效液相色谱串联四级杆飞行时间质谱法(HPLC-QTOF-MS)分析LPP组成,利用HepG2细胞建立胰岛素抵抗模型,用LPP作用于IR-HepG2细胞,通过测定细胞葡萄糖消耗量初步探究LPP对糖代谢的影响,再通过测定糖原含量和己糖激酶(Hexokinase,HK)、丙酮酸激酶(Pyruvate Kinase,PK)、磷酸烯醇式丙酮酸羧基酶(Phosphoenol Pyruvate Carboxykinase,PEPCK)、葡萄糖六磷酸酶(Glucose-6-Phosphatase,G6Pase)的活性,探究LPP调节细胞糖代谢的作用途径。结果:经过HPLC-QTOF-MS分析出12种物质,主要为黄酮及其苷类成分;在糖代谢研究方面,与模型组相比浓度为0.1~2 mg/mL柠檬皮多酚可显著提高细胞葡萄糖消耗量(P<0.05),且当浓度为0.5 mg/mL时其提高IR-HepG2细胞糖原含量和HK、PK活性,降低PEPCK和G6Pase活性的能力最接近于二甲双胍阳性对照。结论:柠檬皮多酚可以缓解IR-HepG2细胞的胰岛素抵抗状态,并能通过促进糖原合成、提高糖酵解关键酶活性、降低糖异生酶活力的方式调节糖代谢水平,为后续的体内研究提供了数据支持,并为未来开发功能性产品提供了理论依据。
  • 图  1  柠檬皮多酚总离子流色谱图

    Figure  1.  TIC chromatography of lemon peel polyphenols

    图  2  柠檬皮多酚高效液相色谱图

    Figure  2.  HPLC chromatography of lemon peel polyphenols

    图  3  峰9(b)的EIC图(A)、一级质谱图(B)和二级质谱图(C)

    Figure  3.  EIC spectra (A)、MS spectra (B) and MS/MS spectra (C) of peak 9(b)

    图  4  LPP对IR-HepG2细胞葡萄糖消耗量的影响

    Figure  4.  Effect of LPP on the glucose consumption of IR-HepG2 cells

    注:相同培养时间条件下,#表示与模型组相比差异显著(P<0.05);△表示与阳性对照组相比差异显著(P<0.05),未标注表示差异不显著(P>0.05)。

    图  5  LPP对IR-HepG2细胞存活率的影响

    Figure  5.  Effect of LPP on survival rate of IR-HepG2 cells

    图  6  LPP对IR-HepG2细胞中糖原含量的影响

    Figure  6.  Effect of LPP on the glycogen content in IR-HepG2 cells

    注:与空白对照组相比,*表示P<0.05,**表示P<0.01,***表示P<0.001;与模型组相比,###表示P<0.001;与阳性对照组相比,△△表示P<0.01,△△△表示P<0.001;未标记表示P>0.05,图7~图10同。

    图  7  LPP对IR-HepG2细胞中HK活性的影响

    Figure  7.  Effect of LPP on the activity of HK in IR-HepG2 cells

    图  8  LPP对IR-HepG2细胞中PK活性的影响

    Figure  8.  Effect of LPP on the activity of PK in IR-HepG2 cells

    图  9  LPP对IR-HepG2细胞中PEPCK活性的影响

    Figure  9.  Effect of LPP on the activity of PEPCK in IR-HepG2 cells

    图  10  LPP对IR-HepG2细胞中G6Pase活性的影响

    Figure  10.  Effect of LPP on the activity of G6Pase in IR-HepG2 cells

    表  1  LPP成分分析结果

    Table  1.   The results of LPP component analysis

    序号保留时间(min)母离子子离子分子式误差名称参考文献
    13.34169.049593 [M+H-甲氧基-CO-羟基]+C8H8O40.06香草酸[18]
    24.93355.1024193 [M+H-葡萄糖]+C16H18O9−0.12新绿原酸[19]
    37.70625.1760487 [M+H-138]+C28H32O160.56Chrysoeriol-7-O-(2'-O-mannopyranosyl)allopyranoside
    47.93449.1080329 [M+H-120]+C21H20O11−0.21荭草素[20]
    59.18433.1131283 [M+H-阿拉伯糖]+C21H20O10−0.85山奈黄苷[21]
    69.19597.1815289 [M+H-新橙皮糖]+C27H32O15−0.27圣草枸橼苷[22]
    79.37579.1708271 [M+H-新橙皮糖]+
    433 [M+H-鼠李糖]+
    C27H30O14−0.56野漆树苷[17]
    810.26463.1233313 [M+H-阿拉伯糖]+C22H22O11−0.4金雀花素
    9(a)11.94609.1813301 [M+H-新橙皮糖]+
    463 [M+H-鼠李糖]+
    C28H32O15−0.86地奥司明[23]
    9(b)11.98611.1960303 [M+H-鼠李糖-葡萄糖]+
    465 [M+H-鼠李糖]+
    C28H34O150.39橙皮苷[17]
    1012.41353.0855147 [M+H-206]+C16H16O90.614-甲基-7-乙酰氧基香豆素-β-D-葡萄糖醛酸苷
    1124.59515.2277161 [M+H-C18H28O8]+
    411 [M+H-C3H4O4]+
    C28H34O9−0.2诺米林[24]
    下载: 导出CSV
  • [1] YUAN M, GAO W N, YU Y J, et al. Research progress of quercetin in prevention and treatment of type 2 diabetes mellitus[J]. Journal of nutrition,2020,42(6):618−622.
    [2] 爱伟, 刘莉莉, 杨亚晋, 等. 植物多酚的生物活性及其在家禽生产中的应用[J]. 动物营养学报,2019,31(2):491−499. [AI Wei, LIU Lili, YANG Yajin, et al. Bioactivity of plant polyphenols and their application in poultry production[J]. Chinese Journal of Animal Nutrition,2019,31(2):491−499. doi:  10.3969/j.issn.1006-267x.2019.02.001
    [3] 李晓东. 榛子果仁中酚类物质的制备及其抗氧化、抗菌活性的研究[D]. 长春: 长春理工大学, 2019

    LI Xiaodong. Preparation of phenols from hazelnut kernels and their antioxidant and antibacterial activities[D]. Changchun: Changchun University of Science and Technology, 2018.
    [4] ZHANG Y, LI A, YANG X. Effect of lemon seed flavonoids on the anti-fatigue and antioxidant effects of exhausted running exercise mice[J]. Journal of Food Biochemistry,2021,45(8):157−163.
    [5] TINH N, SITOLO G C, YAMAMOTO Y, et al. Citrus limon peel powder reduces intestinal barrier defects and inflammation in a colitic murine experimental model[J]. Journal of Food Bioche-mistry,2021,183(24):1147−1156.
    [6] DONG L, XIN S. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells[J]. Oncology Reports,2013,121(3):177−184.
    [7] TEJPAL S, WEMYSS A M, BASTIE C C, et al. Lemon extract reduces angiotensin converting enzyme (ACE) expression and activity and increases insulin sensitivity and lipolysis in mouse adipocytes[J]. Nutrients,2020,12(8):23−48.
    [8] 张放. 2010—2020年全球柑桔生产变化简析[J]. 中国果业信息,2022,39(1):26−43. [ZHANG Fang. Changes of global citrus production from 2010 to 2020[J]. China Fruit News,2022,39(1):26−43. doi:  10.3969/j.issn.1673-1514.2022.01.005
    [9] 容欧, 刘珊. 柠檬精深加工研究现状[J]. 现代食品,2019(4):5−7, 11. [RONG Ou, LIU Shan. Research status of lemon intensive and deep processing[J]. Modern Food,2019(4):5−7, 11. doi:  10.16736/j.cnki.cn41-1434/ts.2019.04.002
    [10] SIMEONE G, MATTEO A D, RAO M A, et al. Variations of peel essential oils during fruit ripening in four lemon (Citrus limon (L.) Burm. F.) cultivars[J]. Journal of the Science of Food and Agriculture,2020,100(1):193−200. doi:  10.1002/jsfa.10016
    [11] 黄修晴. 柠檬皮多酚生物活性及其对肠道菌群的影响[D]. 哈尔滨: 黑龙江东方学院, 2021

    HUANG Xiuqing. Bioactivity of polyphenols from lemon peel and its effect on intestinal microflora[D]. Harbin: East University of Heilongjiang, 2021.
    [12] 高亚东, 朱安, 李璐迪, 等. 吴茱萸碱对HepG2细胞毒性及其机制[J]. 北京大学学报(医学版),2021,53(6):1107−1114. [GAO Yadong, ZHU An, LI Ludi, et al. Cytotoxicity and underlying mechanism of evodiamine in HepG2 cells[J]. Journal of Peking University (Health Sciences),2021,53(6):1107−1114. doi:  10.19723/j.issn.1671-167X.2021.06.017
    [13] LI J, LUO J, CHAI Y, et al. Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix astragali extract[J]. Food Science Natural,2021,26;9(4):2075−2085.
    [14] BIAN G, YANG J, ELANGO J, et al. Natural triterpenoids isolated from Akebia trifoliata stem explants exert a hypoglycemic effect via α-glucosidase inhibition and glucose uptake stimulation in insulin-resistant HepG2 cells[J]. Chemical Biodivers,2021,18(5):1178−1187.
    [15] 王梦丽. 鸡树条荚蒾果中降血糖成分的提取及其活性研究[D]. 哈尔滨: 东北林业大学, 2020

    WANG Mengli. Study on extraction and activity of hypoglycemic components from Viburnum burnum fruit[D]. Harbin: Northeast Forestry University, 2020.
    [16] GHASEMI M, TURNBULL T, SEBASTIAN S, et al. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis[J]. International Journal of Molecular Sciences,2021,22(23):12−17.
    [17] 于国华, 杨洪军, 李俊芳, 等. 基于UHPLC-LTQ-Orbitrap-MS/MS技术分析枳实中的化学成分[J]. 中国中药杂志,2016,41(18):3371−3378. [YU Guohua, YANG Hongjun, LI Junfang, et al. UHPLC-LTQ-Orbitrap-MS/MS was used to analyze the chemical constituents of Aurantii trifoliata[J]. China Journal of Chinese Materia Medica,2016,41(18):3371−3378.
    [18] 陈金梅, 廖锦红, 高金薇, 等. UPLC-Q-TOF-MS/MS研究胆木药材水提物的化学成分[J]. 中国实验方剂学杂志,2018,24(18):49−56. [CHEN Jinmei, LIAO Jinhong, GAO Jinwei, et al. UPLC-Q-TOF-MS/MS was used to study the chemical constituents of the water extract of Gallwood[J]. Chinese Journal of Experimental Formulae,2018,24(18):49−56. doi:  10.13422/j.cnki.syfjx.20181517
    [19] 何峰, 王永林, 郑林, 等. UPLC-PDA-ESI-MS分析杜仲中化学成分[J]. 中国实验方剂学杂志,2014,20(3):59−62. [HE Feng, WANG Yonglin, ZHENG Lin, et al. Analysis of chemical constituents in Eucommia ulmoides by UPLC-PDA-ESI-MS[J]. Chinese Journal of Experimental Formulae,2014,20(3):59−62.
    [20] 石芳, 廖霞, 卢可可, 等. UPLC-DAD/ESI-TOF-MS鉴定黑脉羊肚菌多酚化合物[J]. 食品科学,2017,38(16):115−121. [SHI Fang, LIAO Xia, LU Keke, et al. Identification of polyphenol compounds in Morchella nigricae by UPLC-DAD/ESI-TOF-MS[J]. Food Science,2017,38(16):115−121. doi:  10.7506/spkx1002-6630-201716018
    [21] 郑亚美. 侧柏叶多酚的分离纯化、结构鉴定及相关活性研究[D]. 广州: 华南理工大学, 2017

    ZHENG Yamei. Isolation, purification, structure identification and related activities of polyphenols from the leaves of Platycladus orientalis[D]. Guangzhou: South China University of Technology, 2017.
    [22] 李汀, 邹波, 吴继军, 等. 蜜柚果肉膳食多酚的结构鉴定及抗氧化机理[J]. 食品科学,2021,42(19):202−210. [LI Ting, ZOU Bo, WU Jijun, et al. Structural identification and antioxidant mechanism of dietary polyphenols in Pomelo pulp[J]. Food Science,2021,42(19):202−210. doi:  10.7506/spkx1002-6630-20201124-238
    [23] 李哲, 宋瑞, 许风国, 等. 大鼠灌服枳实提取液后体内黄酮类代谢产物的LC-MS/MS分析[J]. 中国药科大学学报,2010,41(6):539−547. [LI Zhe, SONG Rui, XU Fengguo, et al. LC-MS/MS analysis of flavonoid metabolites in rats after gavage of Immaturus aurantii extract[J]. Journal of China Pharmaceutical University,2010,41(6):539−547. doi:  10.11665/j.issn.1000-5048.20100612
    [24] 孟鹏. 金柑柠檬苦素类化合物的提取纯化、结构鉴定及生物活性研究[D]. 福州: 福建农林大学, 2013

    MENG Peng. Extraction, purification, structure identification and biological activity of limonin compounds from kumquat[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013.
    [25] 陈欢, 张铭珈, 倪慧, 等. 应激损伤糖尿病细胞模型的建立及不同浓度逍遥散含药血清对其生存率的影响[J]. 时珍国医国药,2019,30(1):26−29. [CHEN Huan, ZHANG Minjia, NI Hui, et al. The establishment of diabetic cell model with stress injury and the effect of different concentrations of Xiao Yao San-containing serum on survival rate[J]. Lishizhen Medicine and Materia Medica Research,2019,30(1):26−29.
    [26] 魏奇. 姬松茸多酚降血糖活性及其作用机制的研究[D]. 福州: 福建农林大学, 2020

    WEI Qi. Hypoglycemic activity of polyphenols in Agaricus blazei and its mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
    [27] 盛瑜, 白丽丹, 段懿涵, 等. 北虫草刺五加组合物抗疲劳活性及机理研究[J]. 食品研究与开发,2020,41(20):15−21. [SHENG Yu, BAI Lidan, DUAN Yihan, et al. Study on antifatigue activity and mechanism of Acanthopanax composition from Cordyceps sinensis[J]. Food Research and Development,2020,41(20):15−21. doi:  10.12161/j.issn.1005-6521.2020.20.003
    [28] KIM J J Y, TAN Y, XIAO L, et al. Green tea polyphenol epigallocatechin-3-gallate enhance glycogen synthesis and inhibit lipogenesis in hepatocytes[J]. BioMed Research International,2013,9(20):128−136.
    [29] MALGORZATA Z S, PAWLIK N. Japanese quince (Chaenomeles japonica L.) fruit polyphenolic extract modulates carbohydrate metabolism in HepG2 cells via AMP-activated protein kinase[J]. Acta Biochimica Polonica,2018,65(1):67−78. doi:  10.18388/abp.2017_1604
    [30] 刘嘉婧, 刘荣花, 储以微. 免疫代谢研究进展[J]. 中国免疫学杂志,2017,33(1):148−151. [LIU Jiajing, LIU Ronghua, CHU Yiwei. Progress in immune metabolism research[J]. Chinese Journal of Immunology,2017,33(1):148−151. doi:  10.3969/j.issn.1000-484X.2017.01.032
    [31] 符群, 王梦丽, 郐滨, 等. 鸡树条荚蒾果多酚改善胰岛素抵抗HepG2细胞的糖代谢效应[J]. 北京林业大学学报,2020,42(2):106−113. [FU Qun, WANG Mengli, KUAI Bin, et al. Effects of Viburnum fruit polyphenols on glucose metabolism in insulin-resistant HepG2 cells[J]. Journal of Beijing Forestry University,2020,42(2):106−113. doi:  10.12171/j.1000-1522.20190243
    [32] 崔继雯. LAMTOR1通过LKB1/SIK途径调节糖异生[D]. 厦门: 厦门大学, 2018

    CUI Jiwen. LAMTOR1 regulates gluconeogenesis through the LKB1/SIK pathway[D]. Xiamen: Xiamen University, 2018.
    [33] ELUMALAI N. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats[J]. Toxicology Mechanisms and Methods,2019,29(1):1−32. doi:  10.1080/15376516.2018.1477897
    [34] JU J U, MI-KYUNG L, KYU-SHIK J, et al. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice[J]. Journal of Nutrition,2004,134(10):24−29.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  50
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回