• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

红谷黄酒发酵过程中微生物多样性与理化指标、挥发性风味的相关性分析

谷晓东 李素萍 杨柳青 刘怡琳 马艳莉 陈志周 王印壮 刘旭

谷晓东,李素萍,杨柳青,等. 红谷黄酒发酵过程中微生物多样性与理化指标、挥发性风味的相关性分析[J]. 食品工业科技,2022,43(23):133−143. doi:  10.13386/j.issn1002-0306.2022020255
引用本文: 谷晓东,李素萍,杨柳青,等. 红谷黄酒发酵过程中微生物多样性与理化指标、挥发性风味的相关性分析[J]. 食品工业科技,2022,43(23):133−143. doi:  10.13386/j.issn1002-0306.2022020255
GU Xiaodong, LI Suping, YANG Liuqing, et al. Correlation Analysis between Microbial Diversity and Physicochemical Indexes, Volatile Flavor during the Fermentation of Red Millet Huangjiu[J]. Science and Technology of Food Industry, 2022, 43(23): 133−143. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020255
Citation: GU Xiaodong, LI Suping, YANG Liuqing, et al. Correlation Analysis between Microbial Diversity and Physicochemical Indexes, Volatile Flavor during the Fermentation of Red Millet Huangjiu[J]. Science and Technology of Food Industry, 2022, 43(23): 133−143. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020255

红谷黄酒发酵过程中微生物多样性与理化指标、挥发性风味的相关性分析

doi: 10.13386/j.issn1002-0306.2022020255
基金项目: 国家自然科学基金(31601462);南阳市科技重大专项(2019ZDZX10);河南省工业微生物资源与发酵技术重点实验室开放课题(HIMFT20190307、HIMFT20190308);河南省高等学校青年骨干培养计划(2020GGJS226)
详细信息
    作者简介:

    谷晓东(1996−),男,硕士研究生,研究方向:食品工程,E-mail:1921261906@qq.com

    通讯作者:

    马艳莉(1982−),女,博士,教授,研究方向:食品营养与安全,E-mail:myl_dz@sina.com

    陈志周(1968−),男,博士,教授,研究方向:食品包装材料与技术,E-mail:chenzhizhou2003@126.com

  • 中图分类号: TS261.1

Correlation Analysis between Microbial Diversity and Physicochemical Indexes, Volatile Flavor during the Fermentation of Red Millet Huangjiu

  • 摘要: 为探究红谷黄酒发酵过程中微生物群落与理化指标、挥发性风味之间的相关性,本研究通过微生物高通量测序技术、理化指标检测及气相色谱-质谱技术等对黄酒样品进行测定并用SPSS软件进行相关性分析。结果显示随着发酵的进行,还原糖含量在初期急剧下降后逐渐稳定,酒精度变化与之相反;总酸含量先快速增加后减少再增加,pH较为稳定;氨基态氮含量先波动增加后急剧上升,可溶性固形物含量先剧烈下降后趋于稳定。发酵过程中10次取样(1~7、10、20、30 d)共检测出14个细菌门和228个细菌属;7个真菌门和108个真菌属。在属水平细菌群落可聚类为3类,真菌群落可聚类为5类。细菌属水平与总酸显著正相关(P<0.05),与还原糖显著负相关(P<0.05),真菌属水平与氨基态氮显著正相关(P<0.05)。2,3-丁二醇以及乳酸乙酯与大部分菌属显著正相关(P<0.05)。Klebsiella与辛酸乙酯显著负相关(P<0.05);Lactococcus与乙醇、2-丁醇、异丁醇、苯乙醇和棕榈酸乙酯呈显著负相关(P<0.05)。Monascus与乳酸乙酯显著负相关(P<0.05);Apiotrichum与2-丁醇、异丁醇和异戊醇显著负相关(P<0.05)。以上结果表明,红谷黄酒发酵过程中微生物多样性有显著性变化,并与其理化指标及风味变化具有一定相关性;本研究为后续红谷黄酒品质的提升与发展提供了理论参考。
  • 图  1  发酵过程中主要细菌门和主要细菌属分布

    Figure  1.  Changes in relative abundance of major bacterial phylum and major bacterial genus during fermentation

    注:a:门,b:属,图3同;JZ1~JZ7、JZ8、JZ9、JZ10分别表示发酵1~7、10、20、30 d取样,图2~图4同。

    图  2  细菌属群落结构相似性分析

    Figure  2.  Community structure similarity analysis of bacterial genera

    注:a:非度量多维尺度分析图,b:基于Beta多样性距离的样品层级聚类树;图4同。

    图  3  发酵过程中主要真菌门和主要真菌属的分布

    Figure  3.  Changes in relative abundance of major fungi phylum and major fungi genus during fermentation

    图  4  真菌属群落结构相似性分析

    Figure  4.  Community structure similarity analysis of fungi genera

    图  5  红谷黄酒发酵过程中微生物群落与挥发性物质相关性热图

    Figure  5.  Heatmap of correlation between microbial community and volatile substances during fermentation of red millet Huangjiu

    表  1  发酵过程中红谷黄酒理化指标

    Table  1.   Physiochemical indexes of red millet Huangjiu during fermentation

    取样时间(d)总糖(g/L)还原糖(g/L)酒精度(%vol)总酸(g/L)pH氨基态氮(g/L)可溶性固形物(%)
    149.37±0.35a1.30±0.07j3.54±0.06g3.79±0.01a0.28±0.01h22.02±0.03a
    227.59±0.29b3.73±0.06i5.69±0.07f3.73±0.01a0.26±0.01g15.54±0.05b
    321.53±0.14c9.28±0.11h6.84±0.11e3.68±0.01a0.50±0.03f10.63±0.12h
    417.78±0.35d10.98±0.02g7.61±0.09b3.67±0.01a0.59±0.03d10.36±0.02j
    515.26±0.06e11.81±0.03f7.22±0.10cd3.66±0.01a0.50±0.04f10.59±0.03i
    612.50±0.27f12.06±0.06e7.18±0.12d3.73±0.01a0.52±0.01e11.03±0.05f
    712.36±0.32g14.73±0.03c7.22±0.06cd3.70±0.01a0.59±0.02d11.14±0.08e
    109.48±0.06h15.23±0.02b7.37±0.07c3.70±0.01a0.67±0.03c10.78±0.04g
    206.32±0.09i15.55±0.06a7.56±0.08b3.69±0.01a0.79±0.03b11.18±0.06d
    309.18±0.015.93±0.07j14.63±0.04d7.80±0.06a3.66±0.01a1.06±0.04a12.25±0.13c
    注:同一列中的不同字母根据Duncan测验(P<0.05)有显著差异。
    下载: 导出CSV

    表  2  红谷黄酒发酵过程中的挥发性风味物质含量

    Table  2.   Contents of volatile flavor compounds in the fermentation process of red millet Huangjiu

    序号含量(μg/L)样品
    1 d2 d3 d4 d5 d6 d7 d10 d20 d30 d
    1乙醇52134.42±
    3377.21e
    149915.88±
    7825.52d
    373055.94±
    2731.25c
    440994.14±
    33771.12b
    474572.74±
    35896.78b
    484599.04±
    36217.20b
    592017.14±
    43982.99a
    611814.41±
    4623.47a
    624836.10±
    46122.93a
    587669.00±
    40266.84a
    22-丁醇1136.16±
    112.90f
    2710.44±
    169.74e
    4769.59±
    217.92d
    5723.59±
    179.32c
    6101.27±
    432.55bc
    6564.99±
    462.11b
    6590.94±
    453.20b
    7687.23±
    538.84a
    7409.12±
    501.22a
    6598.43±
    482.97b
    3异丁醇282.92±
    14.16e
    3726.78±
    45.21d
    10284.37±
    714.25c
    11835.58±
    861.27abc
    11969.42±
    877.99abc
    12525.91±
    2128.44ab
    12699.31±
    924.20ab
    13491.10±
    823.47a
    12715.77±
    1045.13ab
    11000.01±
    556.07bc
    4异戊醇627.21±
    43.97d
    9394.46±
    598.51c
    26445.11±
    1802.96b
    29888.60±
    1945.33a
    30393.38±
    2001.87a
    31323.60±
    2511.32a
    32188.63±
    2311.46a
    32652.64±
    2395.74a
    30159.71±
    2022.47a
    25630.71±
    1731.82b
    52,3-丁二醇2795.11±
    155.29cd
    5589.75±
    472.46b
    nd2367.33±
    152.07d
    nd2747.25±
    161.26cd
    ndnd3009.86±
    195.45c
    11008.34±
    812.49a
    6苯乙醇nd210.12±
    15.20e
    618.44±
    44.75d
    749.98±
    51.32c
    896.08±
    60.83b
    766.61±
    52.77c
    1149.51±
    84.58a
    790.86±
    61.74c
    826.64±
    63.99bc
    768.82±
    51.66c
    7(2R,3R)-(-)
    -2,3-丁二醇
    ndnd14682.21±
    1221.45b
    11245.10±
    954.79c
    13002.01±
    1106.94bc
    12778.78±
    942.32bc
    33132.36±
    2236.14a
    2329.19±
    156.89d
    12859.08±
    912.15bc
    1128.39±
    12.96d
    8乙酸乙酯390.71±
    21.25e
    5053.39±
    402.14d
    22166.20±
    1499.96c
    31087.09±
    1976.23b
    34667.14±
    2120.59b
    32015.80±
    2249.78b
    ndndnd52828.30±
    4135.98a
    9正己酸乙酯68.99±
    3.99f
    346.10±
    20.11e
    726.95±
    32.54c
    816.86±
    55.96bc
    808.27±
    43.52bc
    859.83±
    51.23b
    585.72±
    47.93d
    997.91±
    109.26a
    574.87±
    61.99d
    983.36±
    71.84a
    10辛酸乙酯30.48±
    2.48g
    178.43±
    9.56f
    443.65±
    34.08cd
    505.77±
    39.58c
    471.51±
    32.47cd
    460.13±
    31.51cd
    414.02±
    29.88de
    786.76±
    56.29b
    369.50±
    25.33e
    947.07±
    65.37a
    11癸酸乙酯nd73.11±
    8.16b
    183.41±
    20.48b
    214.19±
    13.94b
    213.28±
    17.89b
    191.51±
    23.47b
    203.71±
    14.75b
    9390.10±
    772.18a
    164.66±
    12.43b
    216.88±
    11.76b
    12丁酸乙酯nd2742.13±
    161.57c
    ndnd7769.50±
    522.79b
    8816.40±
    625.15ab
    7893.18±
    586.34b
    9570.82±
    756.13a
    ndnd
    13乙酸异戊酯nd160.67±
    11.76f
    682.85±
    52.66d
    870.78±
    64.95bc
    935.24±
    65.19ab
    1021.41±
    41.05a
    818.81±
    60.92c
    955.75±
    82.14ab
    605.41±
    44.68d
    356.37±
    27.17e
    14棕榈酸乙酯ndnd1931.92±
    141.78ef
    2858.62±
    189.47bc
    2263.65±
    159.74de
    1733.76±
    164.01f
    2555.16±
    170.94cd
    5310.44±
    414.03a
    3220.08±
    244.88b
    3020.13±
    181.45b
    15乳酸乙酯ndndndnd835.87±
    55.21d
    nd1420.52±
    109.65c
    1398.43±
    111.99c
    2344.32±
    171.20b
    6522.39±
    461.68a
    16亚油酸乙酯ndndndnd900.37±
    72.50cd
    1037.08±
    54.39b
    981.03±
    79.99bc
    878.05±
    66.20cd
    1264.71±
    87.04a
    801.17±
    53.19d
    17乙酸146.03±
    10.42f
    1787.13±
    83.11e
    3974.75±
    122.89d
    4153.82±
    311.55d
    5194.03±
    371.54c
    4431.39±
    323.98d
    7915.91±
    581.46a
    5627.81±
    438.85bc
    5407.60±
    415.57bc
    5869.98±
    318.94b
    18丁酸nd118.36±
    10.35c
    174.74±
    30.21b
    170.91±
    12.87b
    ndnd268.02±
    17.69a
    270.49±
    18.25a
    161.97±
    9.24b
    nd
    19乙醛1364.63±
    154.58e
    2397.31±
    157.69e
    7289.98±
    500.00d
    7461.452±
    460.00d
    7770.20±
    522.22d
    9250.33±
    601.12c
    11057.09±
    1001.12b
    16458.75±
    1200.05a
    16669.98±
    1320.56a
    6572.29±
    443.21d
    注: nd表示没有检测到;同一行中的不同字母根据Duncan测验(P<0.05)有显著差异。
    下载: 导出CSV

    表  3  发酵过程中细菌和真菌多样性指数表

    Table  3.   Table of bacteria and fungi diversity indexes during fermentation

    取样时间(d)序列数OTU数Shannon指数ACE指数Chao 1指数覆盖率(%)
    细菌真菌细菌真菌细菌真菌细菌真菌细菌真菌细菌真菌
    17936679394180981.651.65252.34164.75234.03132.0099.9299.98
    27968778917282803.071.28316.1696.59323.7899.4399.9499.98
    37936379016182822.061.50320.1997.55273.2989.5099.9199.99
    47943178854306764.721.31348.57123.28363.4294.2099.9099.98
    57939378917333814.551.38372.68102.29395.2292.0099.9099.99
    67949679363257882.541.35319.24113.88317.6197.4399.9199.98
    77945879037225882.331.53284.51123.51275.73101.6099.9199.98
    107949879231300854.351.30331.40104.22328.7592.8699.9499.99
    2080053787693411073.741.96369.03185.14384.13149.0099.9499.97
    3079533793672801462.443.69318.96220.62321.62176.0099.9399.98
    不重复的OTU总个数438246
    下载: 导出CSV

    表  4  发酵过程中理化指标与微生物多样性的相关性

    Table  4.   Correlation coefficients between physicochemical indicators and microbial diversity during fermentation

    指标酒精度还原糖总酸pH可溶性固形物氨基态氮
    细菌0.558−0.664*0.644*−0.600−0.5360.499
    真菌0.191−0.1240.022−0.0350.2190.643*
    注:*表示显著相关(P<0.05)。
    下载: 导出CSV
  • [1] YANG Y J, XIA Y J, WANG G Q, et al. Effect of mixed yeast starter on volatile flavor compounds in Chinese rice wine during different brewing stages[J]. LWT,2017,78:373−381. doi:  10.1016/j.lwt.2017.01.007
    [2] 汪江波, 王浩, 孔博, 等. 黄酒酿造技术研究进展[J]. 酿酒,2020,47(6):26−30. [WANG Jiangbo, WANG Hao, KONG Bo, et al. Recent advances in Huangjiu fermentation technology[J]. Liquor Making,2020,47(6):26−30. doi:  10.3969/j.issn.1002-8110.2020.06.006
    [3] 韩惠敏. 黑米黄酒的酿造关键技术及体外抗氧化活性研究[D]. 汉中: 陕西理工大学, 2020.

    HAN Huimin. Research on the key brewing process and antioxidant activity of black rice Huangjiu in-vitro[D]. Hanzhong: Shaanxi University of Technology, 2020.
    [4] 郭睿, 杨玲, 郭旭凯, 等. 糯高粱黄酒糖化工艺优化及抗氧化活性分析[J]. 中国酿造,2018,37(3):101−106. [GUO Rui, YANG Ling, GUO Xukai, et al. Optimization of saccharification process of Chinese glutinous sorghum wine and its antioxidant activity analysis[J]. China Brewing,2018,37(3):101−106. doi:  10.11882/j.issn.0254-5071.2018.03.021
    [5] 胡武瑶, 杨昳津, 窦慧, 等. 不同麦曲酿造黄酒中挥发性风味物质的代谢差异[J]. 食品与发酵工业,2020,46(8):226−233. [HU Wuyao, YANG Yijin, DOU Hui, et al. Metabolic differences of volatile flavor compounds in Huangjiu fermented with different wheat Qu[J]. Food and Fermentation Industries,2020,46(8):226−233. doi:  10.13995/j.cnki.11-1802/ts.023330
    [6] 李安, 刘小雨, 张惟广. 小米黄酒酿造工艺的研制及优化[J]. 食品研究与开发,2020,41(5):150−157. [LI An, LIU Xiaoyu, ZHANG Weiguang. Development and optimization of brewing technique of millet wine[J]. Food Research and Development,2020,41(5):150−157. doi:  10.12161/j.issn.1005-6521.2020.05.025
    [7] 赖敏辉, 姬中伟, 蒋飞, 等. 黄芪黍米黄酒酿造工艺研究[J]. 食品科技,2020,45(3):93−99. [LAI Minhui, JI Zhongwei, JIANG Fei, et al. Study on brewing technology of yellow wine with Astragalus membranaceus and millet[J]. Food Science and Technology,2020,45(3):93−99. doi:  10.13684/j.cnki.spkj.2020.03.020
    [8] 周建弟, 张蕾, 钱斌, 等. 功能性黄酒提高机体免疫力研究[J]. 中国酿造,2019,38(3):18−22. [ZHOU Jiandi, ZHANG Lei, QIAN Bin, et al. Enhancement of body immunity by functional Huangjiu[J]. China Brewing,2019,38(3):18−22. doi:  10.11882/j.issn.0254-5071.2019.03.005
    [9] 张佳笑, 王健, 刘媛, 等. 复合酒曲发酵马铃薯酒的工艺优化[J]. 中国酿造,2020,39(3):68−72. [ZHANG Jiaxiao, WANG Jian, LIU Yuan, et al. Optimization of fermentation technology of potato wine with compound Jiuqu[J]. China Brewing,2020,39(3):68−72. doi:  10.11882/j.issn.0254-5071.2020.03.014
    [10] 张元, 白卫东, 刘功良. 黄酒生物活性成分及其功能研究进展[J]. 中国酿造,2017,36(7):5−9. [ZHANG Yuan, BAI Weidong, LIU Gongliang. Research progress of bioactive components in Chinese rice wine and their functions[J]. China Brewing,2017,36(7):5−9. doi:  10.11882/j.issn.0254-5071.2017.07.002
    [11] ZHU F B, LI S, GUAN X, et al. Influence of vacuum soaking on the brewing properties of japonica rice and the quality of Chinese rice wine[J]. Journal of Bioscience and Bioengineering,2020,130(2):159−165. doi:  10.1016/j.jbiosc.2020.03.006
    [12] JIAO A Q, XU X M, JIN Z Y. Research progress on the brewing techniques of new-type rice wine[J]. Food Chemistry,2017,215:508−515. doi:  10.1016/j.foodchem.2016.08.014
    [13] 石黎琳, 李安, 牟方婷, 等. 不同品种小米对黄酒风味影响的研究[J]. 中国酿造,2021,40(3):54−63. [SHI Lilin, LI An, MU Fangting, et al. Effect of different kinds of millet on the flavor of Huangjiu[J]. China Brewing,2021,40(3):54−63. doi:  10.11882/j.issn.0254-5071.2021.03.011
    [14] 李杰, 许彬, 罗建成, 等. 红小米黄酒酿造工艺研究及体外抗氧化活性评价[J]. 中国酿造,2021,40(7):123−129. [LI Jie, XU Bin, LUO Jiancheng, et al. Brewing technology and in vitro antioxidant activity evaluation of red-millet Huangjiu[J]. China brewing,2021,40(7):123−129. doi:  10.11882/j.issn.0254-5071.2021.07.023
    [15] 鞠乐, 强学杰, 牛银亭, 等. 南阳地区谷子产业现状及发展对策的研究与探讨[J]. 大麦与谷类科学,2017,34(3):45−47. [JU Le, QIANG Xuejie, NIU Yinting, et al. The present status of millet industry in Nanyang region and proposed strategies for its development[J]. Barley and Cereal Sciences,2017,34(3):45−47. doi:  10.14069/j.cnki.32-1769/s.2017.03.011
    [16] 陈林玉, 宋乐园, 王云雨, 等. 红小米化学成分与营养成分分析[J]. 食品科学,2021,42(18):218−224. [CHEN Linyu, SONG Leyuan, WANG Yunyu, et al. Analysis of chemical and nutritional components of red millet[J]. Food Science,2021,42(18):218−224. doi:  10.7506/spkx1002-6630-20200905-064
    [17] 蔡乔宇, 周坚, 缪礼鸿, 等. 黄酒专用米的研究进展[J]. 中国酿造,2018,37(6):1−5. [CAI Qiaoyu, ZHOU Jian, MIAO Lihong, et al. Research progress of specific rice for Huangjiu production[J]. China Brewing,2018,37(6):1−5. doi:  10.11882/j.issn.0254-5071.2018.06.001
    [18] 洪家丽, 李秋艺, 潘雨阳, 等. 红曲黄酒传统酿造过程挥发性风味组分及微生物菌群多样性分析[J]. 食品科学,2019,40(12):137−144. [HONG Jiali, LI Qiuyi, PAN Yuyang, et al. Changes in volatile metabolites and microbial community dynamics during the traditional brewing of Hongqu glutinous rice wine[J]. Food Science,2019,40(12):137−144. doi:  10.7506/spkx1002-6630-20180211-135
    [19] 陈蒙恩, 侯建光, 张振科, 等. 陶融型大曲微生物多样性与挥发性风味成分的相关性研究[J]. 中国酿造,2020,39(10):54−60. [CHEN Mengen, HOU Jianguang, ZHANG Zhenke, et al. Correlation between microbial diversity and volatile flavor components of Taorong-type Daqu[J]. China brewing,2020,39(10):54−60. doi:  10.11882/j.issn.0254-5071.2020.10.011
    [20] 严超. 红枣白兰地发酵过程中细菌群落结构及与风味物质的相关性研究[D]. 保定: 河北农业大学, 2018.

    YAN Chao. Bacterial communities and profile of aroma compounds: A correlation study in the process of jujube brandy fermentation[D]. Baoding: Hebei Agricultural University, 2018.
    [21] LI S P, LIANG J J, MA Y L, et al. Physicochemical properties of red millet: A novel Chinese rice wine brewing material[J]. Journal of Food Processing and Preservation,2021,45(6):e15556.
    [22] 赵凯, 许鹏举, 谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学,2008(8):534−536. [ZHAO Kai, XU Pengju, GU Guangye. Study on determination of reducing sugar content using 3,5-dinitrosalicylic acid method[J]. Food Science,2008(8):534−536. doi:  10.3321/j.issn:1002-6630.2008.08.127
    [23] YU H, XIE T, XIE J, et al. Characterization of key aroma compounds in Chinese rice wine using gas chromatography-mass spectrometry and gas chromatography-olfactometry[J]. Food Chemistry,2019,293:8−14. doi:  10.1016/j.foodchem.2019.03.071
    [24] 母应春, 姜丽, 苏伟. 应用Illumina高通量测序技术分析3种酒曲中微生物多样性[J]. 食品科学,2019,40(14):115−122. [MU Yingchun, JIANG Li, SU Wei. Analysis of microbial diversity in three rice wine kojis by Illumina high-throughput sequencing[J]. Food Science,2019,40(14):115−122. doi:  10.7506/spkx1002-6630-20181030-359
    [25] LIU S, YANG L, ZHOU Y, et al. Effect of mixed moulds starters on volatile flavor compounds in rice wine[J]. LWT,2019,112:108215. doi:  10.1016/j.lwt.2019.05.113
    [26] 孙剑秋, 邹慧君, 谢广发. 黄酒酿造学[Z]. 北京: 科学出版社, 2019, 2-127.

    SUN Jianqiu, ZOU Huijun, XIE Guangfa. Huang-jiu brewing[M]. BeiJing: Science Press, 2019, 2-127.
    [27] 朱小芳, 张凤杰, 俞剑燊, 等. 黄酒浸米水中细菌群落结构及优势菌代谢分析[J]. 食品科学,2017,38(10):82−86. [ZHU Xiaofang, ZHANG Fengjie, YU Jianshen, et al. Analysis of microbial community structure and metabolic characteristics of dominant microbes in rice milk for yellow wine[J]. Food Science,2017,38(10):82−86. doi:  10.7506/spkx1002-6630-201710014
    [28] CAI H Y, ZHANG T, ZHANG Q, et al. Microbial diversity and chemical analysis of the starters used in traditional Chinese sweet rice wine[J]. Food Microbiology,2018,73:319−326. doi:  10.1016/j.fm.2018.02.002
    [29] GONG M, ZHOU Z L, JIN J S, et al. Effects of soaking on physicochemical properties of four kinds of rice used in Huangjiu brewing[J]. Journal of Cereal Science,2020,91:102855. doi:  10.1016/j.jcs.2019.102855
    [30] WEI X L, LIU S P, YU J S, et al. Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process[J]. Journal of Bioscience and Bioengineering,2017,123(4):460−465. doi:  10.1016/j.jbiosc.2016.11.014
    [31] 油卉丹. 不同种类大米黄酒酿造的差异性研究[D]. 无锡: 江南大学, 2017.

    YOU Huidan. Characterization of the difference among Chinese rice wine brewed from different varieties of rice[D]. WuXi: Jiangnan University. 2017, 56.
    [32] 杨辉, 赵敏, 王婷婷, 等. 米酒酿造用大米和酒曲的筛选[J]. 陕西科技大学学报,2020,38(6):34−39. [YANG Hui, ZHAO Min, WANG Tingting, et al. Screening of rice and distiller's yeast for rice wine brewing[J]. Journal of Shanxi University of Science & Technology,2020,38(6):34−39. doi:  10.3969/j.issn.1000-5811.2020.06.007
    [33] 刘小雨, 李科, 张惟广. 纯种发酵和混菌发酵对野木瓜果酒品质的影响[J]. 食品与发酵工业,2018,44(10):134−140. [LIU Xiaoyu, LI Ke, ZHANG Weiguang. Effects of pure and mixed fermentation on the quality of stauntonia chinensis wine[J]. Food and Fermentation Industries,2018,44(10):134−140. doi:  10.13995/j.cnki.11-1802/ts.017368
    [34] 罗涛, 范文来, 徐岩, 等. 我国江浙沪黄酒中特征挥发性物质香气活力研究[J]. 中国酿造,2009(2):14−19. [LUO Tao, FAN Wenlai, XU Yan, et al. Aroma components in Chinese rice wines from different regions[J]. China Brewing,2009(2):14−19. doi:  10.3969/j.issn.0254-5071.2009.02.005
    [35] 陈双, 罗涛, 徐岩, 等. 我国黄酒酵母和酿酒原料对黄酒中β-苯乙醇含量的影响[J]. 中国酿造,2009(4):23−26. [CHEN Shuang, LUO Tao, XU Yan, et al. Effects of yeast strains and raw materials on β-phenylethanol production in Chinese rice wines[J]. China Brewing,2009(4):23−26. doi:  10.3969/j.issn.0254-5071.2009.04.006
    [36] WOLIŃSKA A, KUŹNIAR A, ZIELENKIEWICZ U, et al. Indicators of arable soils fatigue-bacterial families and genera: A metagenomic approach[J]. Ecological Indicators,2018,93:490−500. doi:  10.1016/j.ecolind.2018.05.033
    [37] 宁亚丽, 吴跃, 何嫱, 等. 基于高通量测序技术分析朝鲜族传统米酒及其酒曲中微生物群落多样性[J]. 食品科学,2019,40(16):107−114. [NING Yali, WU Yue, HE Qiang, et al. Analysis of microbial community diversity in Chinese Korean traditional rice wine and its starter culture using high-throughput sequencing[J]. Food Science,2019,40(16):107−114. doi:  10.7506/spkx1002-6630-20180917-173
    [38] 邢敏钰. 芝麻香型白酒发酵过程中乳酸菌群结构及功能[D]. 无锡: 江南大学, 2017.

    XING Minyu. Community struction and function of lactic acid bacteria during fermentation process for sesame-flavor liquor making[D]. Wuxi: Jiangnan University, 2017.
    [39] LI Z M, BAI Z H, WANG D L, et al. Cultivable bacterial diversity and amylase production in three typical daqus of Chinese spirits[J]. International Journal of Food Science & Technology,2014,49(3):776−786.
    [40] 陈雪, 张永利, 闫宗科, 等. 凤香型酒醅微生物群落演替及其与理化指标的相关性分析[J]. 食品科学,2020,41(22):200−205. [CHEN Xue, ZHANG Yongli, YAN Zongke, et al. Correlation analysis of microbial community succession in fermented grains of Xifeng-flavor Chinese liquor with its physicochemical indexes[J]. Food Science,2020,41(22):200−205. doi:  10.7506/spkx1002-6630-20190910-126
    [41] 林少华, 贾红亮, 李星宇, 等. 牛奶酒酿造过程中微生物多样性的动态变化[J]. 中国奶牛,2020(4):39−43. [LIN Shaohua, JIA Hongliang, LI Xingyu, et al. Study on dynamic changes of microbial diversity in milk wine brewing process[J]. Milk and Milk Product,2020(4):39−43. doi:  10.19305/j.cnki.11-3009/s.2020.04.010
    [42] 冯莉, 陈雪, 李丽, 等. 5株克鲁维毕赤酵母的酿造学特性[J]. 中国食品学报,2018,18(12):66−73. [FENG Li, CHEN Xue, LI Li, et al. The enology characteristics of five strains of Pichia kluyveri[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(12):66−73. doi:  10.16429/j.1009-7848.2018.12.009
    [43] 李凯敏, 付桂明, 吴酬飞, 等. 特香型白酒酿造过程中真核微生物菌群演替[J]. 食品科学,2017,38(22):131−136. [LI Kaimin, FU Guiming, WU Choufei, et al. Dynamics of eukaryotic microbial community succession during the traditional fermentation of special-flavor liquor[J]. Food Science,2017,38(22):131−136. doi:  10.7506/spkx1002-6630-201722020
    [44] 李欣, 王彦华, 林静怡, 等. 高通量测序技术分析酱香型白酒酒醅的微生物多样性[J]. 福建师范大学学报(自然科学版),2017,33(1):51−59. [LI Xin, WANG Yanhua, LIN Jingyi, et al. Analysis of microbial diversity in the fermented grains of maotai-flavor liquor using high-throughput sequencing[J]. Journal of Fujian Normal University (Natural Science Edition),2017,33(1):51−59.
    [45] WANG H Y, GAO Y B, FAN Q W, et al. Characterization and comparison of microbial community of different typical Chinese liquor Daqus by PCR-DGGE[J]. Lett Appl Microbiol,2011,53(2):134−140. doi:  10.1111/j.1472-765X.2011.03076.x
    [46] 马琳娜, 邱树毅, 王啸. 不同黄酒酒曲的酿造微生物与风味物质之间的关系[J]. 食品与发酵科技,2021,57(3):81−89. [MA Linna, QIU Shuyi, WANG Xiao. Relationship between brewing microorganisms and flavor compounds in different rice wine Jiuqu[J]. Food and Fermentation Sciences & Technology,2021,57(3):81−89.
    [47] 庞晓娜. 环境微生物对清香型白酒特征风味物质的影响[D]. 北京: 中国农业大学, 2018.

    PANG Xiaona. Effict of environment microbiota on the characterized flavor compounds of light-flavor Baijiu[D]. Beijing: China Agricultural University, 2018.
    [48] 马龙. 开菲尔发酵过程中微生物与挥发性风味物质的相关性[D]. 乌鲁木齐: 新疆师范大学, 2020.

    MA Long. Correlation between microbial diversity and volatile flavor compounds in kefir fermentation process[D]. Urumqi: Xinjiang Normal University, 2020.
    [49] 郑亚伦, 赵婷, 王家胜, 等. 数字化高温大曲发酵过程中微生物群落结构的变化[J]. 食品科学,2022,43(12):171−178. [ZHENG Yalun, ZHAO Ting, WANG Jiasheng, et al. Changes in the microbial community structure during the digitally managed fermentation of high-temperature Daqu[J]. Food Science,2022,43(12):171−178.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  45
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回