Study on Antioxidant Activity of Tricholoma matsutake Polysaccharide in Vitro and Its Effect on Mice Damaged by Ethanol Oxidation
-
摘要: 本文以超氧阴离子自由基(Superoxide anion radicals,O2- · )、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate),ABTS)自由基清除能力、总还原能力为指标研究松茸多糖(Tricholoma matsutake polysaccharide,TMP)体外抗氧化能力;建立乙醇氧化损伤小鼠模型,通过测定小鼠血清中谷丙转氨酶(Alanine transaminase,ALT)、谷草转氨酶(Aspartate transaminase,AST)和碱性磷酸酶(Alkaline phosphatase,AKP)的活力以及肝脏中过氧化氢酶(Catalase,CAT)、丙二醛(Malondialdehyde,MDA)、超氧化物歧化酶(Superoxide dismutase,SOD)和谷胱甘肽过氧化物酶(Glutathione peroxidase,GSH-Px)的水平研究松茸多糖的体内抗氧化活性。体外抗氧化结果表明,松茸多糖对超氧阴离子自由基和ABTS自由基有较好的清除能力,当浓度为1 mg/mL时,清除率分别为56.67%和96.60%,而松茸多糖的总还原能力较低,当浓度为1 mg/mL,吸光值为0.163;动物实验结果表明,连续灌胃四周后,与模型对照组相比,松茸多糖可以使小鼠血清中的ALT、AST和AKP活力显著降低(P<0.05),使肝脏中CAT、SOD和GSH-Px的水平显著升高(P<0.05),MDA的含量显著降低(P<0.05),且呈剂量依赖性。研究表明松茸多糖有一定的抗氧化活性,可为松茸多糖的后续开发应用提供思路。Abstract: In order to study the antioxidant activity of Tricholoma matsutake polysaccharides (TMP), its antioxidant capacity in vitro was investigated using superoxide anion radical (O2- · ) scavenging capacity, total reducing capacity and ABTS radical scavenging capacity as indicators; and then the mouse model of ethanol oxidative damage was established, and the antioxidant activity of Tricholoma matsutake polysaccharides in vivo were measured by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (AKP) in the serum of mice and the activity of catalase (CAT), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the liver. In vitro antioxidant results showed that Tricholoma matsutake polysaccharides had better scavenging ability on superoxide anion free radical and ABTS free radical, and the scavenging rate reached 56.67% and 96.60% when the concentration was 1 mg/mL. However, the total reducing ability of Tricholoma matsutake polysaccharides was not obvious. When the concentration was 1 mg/mL, the absorbance value could reach 0.163. Animal experiment results showed that after four weeks of continuous gastric administration, compared with the model control group, Tricholoma matsutake polysaccharides could significantly reduce ALT, AST and AKP viability in mice serum (P<0.05); it also significantly increased the levels of CAT, SOD and GSH-Px in liver (P<0.05), when the content of MDA was significantly reduced (P<0.05). All these indicators showed a dose-response relationship. The experimental results showed that Tricholoma matsutake polysaccharides had certain antioxidant activity, hoping to provide ideas for the subsequent development and application of Tricholoma matsutake polysaccharides.
-
表 1 实验小鼠分组及处理
Table 1. Grouping and treatment of experimental mice
组别 灌胃试剂 灌胃剂量 空白对照组 生理盐水 0.3 mL 模型对照组 生理盐水 0.3 mL 阳性对照组 VC 100 mg/kg 低剂量组 松茸多糖溶液 100 mg/kg 中剂量组 松茸多糖溶液 200 mg/kg 高剂量组 松茸多糖溶液 400 mg/kg 表 2 小鼠体重变化
Table 2. Changes in body weight of mice
组别 小鼠体重(g) 0 d 7 d 14 d 21 d 28 d 空白对照组 30.4±0.32 31.9±0.42 33.7±0.51 34.8±0.37 36.0±0.22 模型对照组 29.8±0.55 32.3±0.62 33.1±0.35 34.3±0.44 35.7±0.29 阳性对照组 30.2±0.45 32.1±0.58 33.4±0.61 34.9±0.45 35.8±0.71 低剂量组 30.3±0.37 32.3±0.32 33.8±0.29 34.9±0.54 35.6±0.27 中剂量组 30.5±0.28 31.8±0.33 33.5±0.56 35.0±0.27 36.2±0.61 高剂量组 30.1±0.43 32.5±0.51 33.6±0.36 34.9±0.41 36.1±0.52 表 3 松茸多糖对小鼠血清中ALT、AST、AKP活力的影响
Table 3. Effect of Tricholoma matsutake polysaccharides on the activities of ALT, AST and AKP in the serum of mice
组别 剂量
(mg/kg)ALT
(U/L)AST
(U/L)AKP
(U/L)空白对照组 0 14.61±0.59 32.43±1.37 56.26±3.28 模型对照组 0 28.33±1.29# 60.19±1.72# 182.28±9.42# 阳性对照组 100 17.76±1.02* 37.22±1.02* 75.89±4.78* 低剂量组 100 24.56±1.06*& 45.64±1.27*& 147.65±11.92*& 中剂量组 200 22.34±1.39*& 42.96±1.43*& 136.02±10.21*& 高剂量组 400 20.16±1.03* 40.22±1.04* 109.88±6.28*& 注:#:与空白对照组比较,差异显著(P<0.05); *:与模型对照组比较,差异显著(P<0.05); &:与阳性对照组比,差异显著(P<0.05);表4同。 表 4 松茸多糖对小鼠肝脏中CAT、MDA、SOD和GSH-Px水平的影响
Table 4. Effects of Tricholoma matsutake polysaccharides on the levels of CAT, MDA, SOD and GSH-Px in the liver of mice
组别 剂量
(mg/kg)CAT
(U/mg prot)SOD
(U/mg prot)MDA
(nmol/mg prot)GSH-Px
(U/mg prot)空白对照组 0 97.03±2.84 152.83±2.88 4.60±0.38 78.60±3.83 模型对照组 0 44.41±1.63# 110.58±2.17# 10.61±0.27# 41.67±1.23# 阳性对照组 100 89.05±3.24* 150.88±2.65* 5.23±0.22* 74.46±2.98* 低剂量组 100 56.73±1.67*& 117.44±1.89& 8.30±0.66*& 48.55±1.09& 中剂量组 200 62.45±2.21*& 120.89±1.22*& 8.16±0.94*& 47.93±1.94& 高剂量组 400 72.42±1.78*& 144.52±2.51* 6.29±0.44* 68.47±2.06* -
[1] 赵顺义. 珍稀名贵食用菌—松茸[J]. 养生月刊,2017,38(6):518−519. [ZHAO S Y. Rare and rare edible fungi—matsutake[J]. Health Preservation Monthly,2017,38(6):518−519. doi: 10.3969/j.issn.1671-1734.2017.06.012 [2] 李建文, 杨永平, 毕迎凤, 等. 松茸主要产地的遗传多样性研究[C]. 中国菌物学会2016年学术年会论文摘要集. 2016.LI J W, YANG Y P, BI Y F, et al. Genetic diversity of Tricholoma matsutake from major producing areas[C]. Proceedings of the 2016 Annual Meeting of Chinese Fungi Society. 2016. [3] DENG M, WANG J, LI Y L, et al. The impact of polyphenols extracted from Tricholoma matsutake on UVB-induced photoaging in mouse skin[J]. Journal of Cosmetic Dermatology,2021,21(2):781−793. [4] 王秋果. 野生松茸有效成分活性研究及风味产品的研制[D]. 成都: 成都大学, 2020.WANG Q G. Study on active ingredients of wild matsutake and development of flavored products[D]. Chengdu: Chengdu University, 2020. [5] KIM J Y, BYEON S E, LEE Y G, et al. Immunostimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake[J]. Journal of Microbiology and Biotechnology,2008,18(1):95−103. [6] DING X, HOU W, ZHONG J, et al. Anti-microorganism, anti-tumor, and immune activities of a novel polysaccharide isolated from Tricholoma matsutake[J]. Pharmacognosy Magazine,2013,9(35):244−249. doi: 10.4103/0973-1296.113278 [7] YANG H R, CHEN L H, ZENG Y J. Structure, antioxidant activity and in vitro hypoglycemic activity of a polysaccharide purified from Tricholoma matsutake[J]. Foods,2021,10(9):2184. doi: 10.3390/foods10092184 [8] YOU L, GAO Q, FENG M, et al. Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities[J]. Food Chemistry,2013,138(4):2242−2249. doi: 10.1016/j.foodchem.2012.11.140 [9] HU Y, HE Y, NIU Z, et al. A review of the immunomodulatory activities of polysaccharides isolated from Panax species[J]. Journal of Ginseng Research,2022,46(1):23−32. doi: 10.1016/j.jgr.2021.06.003 [10] PURUSHOTHAMAN A, TEENA R K S, JACOB J M, et al. Curcumin analogues with improved antioxidant properties: A theoretical exploration[J]. Food Chemistry,2021,373(PB):131499. [11] 周静. 天然抗氧化物质的提取、分离及活性研究[D]. 杭州: 浙江大学, 2008.ZHOU J. Study on extraction, isolation and activity of natural antioxidants [D]. Hangzhou: Zhejiang University, 2008. [12] MU S, YANG W, HUANG G. Antioxidant activities and mechanisms of polysaccharides[J]. Chemical Biology & Drug Design,2020,97(3):628−632. [13] CHEN Y, DU X J, ZHANG Y, et al. Ultrasound extraction optimization, structural features, and antioxidant activity of polysaccharides from Tricholoma matsutake[J]. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology),2017,18(8):674−684. [14] 吴杨洋, 田淑雨, 鹿士峰, 等. 不同提取方法对松茸多糖理化性质及抗氧化活性的影响[J]. 食品安全质量检测学报,2018,9(19):5164−5170. [WU Y Y, TIAN S Y, LU S F, et al. Effects of different extraction methods on physicochemical properties and antioxidant activity of Tricholoma matsutake polysaccharides[J]. Journal of Food Safety,2018,9(19):5164−5170. doi: 10.3969/j.issn.2095-0381.2018.19.026 [15] DING X, TANG J, CAO M, et al. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutake[J]. International Journal of Biological Macromolecules,2010,47(2):271−275. doi: 10.1016/j.ijbiomac.2010.04.010 [16] 刘刚, 王辉, 张洪. 松茸多糖对D-半乳糖所致小鼠衰老模型的影响[J]. 中国药理学通报,2012,28(10):1439−1442. [LIU G, WANG H, ZHANG H. Effects of Tricholoma matsutake polysaccharides on D-galactose induced aging in mice[J]. Chinese Pharmacological Bulletin,2012,28(10):1439−1442. [17] 王静杰, 杜鑫, 钟强, 等. 超声辅助酶法制备海参性腺多糖的结构特性及抗氧化活性[J]. 食品科学,2021,42(21):97−104. [WANG J J, DU X, ZHONG Q, et al. Structural characteristics and antioxidant activity of polysaccharides prepared from sea cucumber gonad by ultrasound-assisted enzymatic hydrolysis[J]. Food Science,2021,42(21):97−104. doi: 10.7506/spkx1002-6630-20201215-186 [18] 孔沛筠, 常雅宁, 聂嘉睿, 等. 木耳多糖提取工艺优化及其体外抗氧化活性研究[J]. 食品与药品,2018,20(3):187−193. [KONG P Y, CHANG Y N, NIE J R, et al. Optimization of extraction process and antioxidant activity of Auricularia auriculata polysaccharide[J]. Food & Drug,2018,20(3):187−193. doi: 10.3969/j.issn.1672-979X.2018.03.006 [19] 何坤明, 王国锭, 白新鹏, 等. 山茱萸籽多糖分离纯化、结构表征及抗氧化活性[J]. 食品科学,2021,42(19):81−88. [HE K M, WANG G D, BAI X P, et al. Isolation, purification, structure characterization and antioxidant activity of Cornus officinalis seed polysaccharides[J]. Food Science,2021,42(19):81−88. doi: 10.7506/spkx1002-6630-20201111-109 [20] 国家食品药品监督管理总局. 国食药监保化[2012]107号《关于印发抗氧化功能评价方法等9个保健功能评价方法的通知》[EB/OL]. (2012-04-23) [2017-07 -18]. http://www.sda.gov.cn/WS01/CL0847/71257.html.China Food and Drug Administration. State food and drug administration [2012] No. 107《About printing nine health care functions such as antioxidant function evaluation method evaluation method of circular》[EB/OL]. (2012-04-23) [2017-07-18]. http://www.sda.gov.cn/WS01/CL0847/71257.html. [21] 中华人民共和国卫生部. 保健食品检验与评价技术规范[M]. 北京: 化学工业出版社, 2003: 43−71Ministry of Health of the People's Republic of China. Technical specification for inspection and evaluation of health food[M]. Beijing: Chemical Industry Press, 2003: 43−71. [22] 董浩迪. 黄秋葵黄酮提取分离及其降血糖活性研究[D]. 天津: 天津科技大学, 2019.DONG H D. Extraction, separation and hypoglycemic activity of flavonoids from Okra [D]. Tianjin: University of Science and Technology, 2019. [23] 付昊, 龙虎, 蔡自建, 等. 熟地黄多糖的体内抗氧化活性研究[J]. 食品研究与开发,2019,40(4):57−61. [FU H, LONG H, CAI Z J, et al. Study on antioxidant activity of polysaccharides from Rehmannia glutinosa[J]. Food Research and Development,2019,40(4):57−61. doi: 10.3969/j.issn.1005-6521.2019.04.011 [24] 彭勇胜. 姬松茸多糖的制备及其抗氧化、保肝作用研究[D]. 武汉: 华中农业大学, 2011.PENG Y S. Preparation of polysaccharides from Agaricus blazei and its antioxidant and liver protection effects [D]. Wuhan: Huazhong Agricultural University, 2011. [25] 张玉, 张绵松, 史亚萍, 等. 铜藻活性组分多糖的体外抗氧化性研究[J]. 食品研究与开发,2018,39(6):12−18. [ZHANG Y, ZHANG M S, SHI Y P, et al. Comparison on antioxidant activity of polysaccharide fraction from Sargassum horneri in vitro[J]. Food Research and Development,2018,39(6):12−18. doi: 10.3969/j.issn.1005-6521.2018.06.003 [26] 张天凤, 张振山, 王帅, 等. 亚麻籽粕提取物抗氧化成分及抗氧化活性研究[J]. 粮食与油脂,2021,34(12):137−141. [ZHANG T F, ZHANG Z S, WANG S, et al. Study on antioxidant components and antioxidant activity of flaxseed meal extract[J]. Grain and Oil,2021,34(12):137−141. doi: 10.3969/j.issn.1008-9578.2021.12.032 [27] 饶雪甜. 黑果腺肋花楸体外消化模拟及其原花青素性质和应用研究[D]. 广州: 华南理工大学, 2020.RAO X T. Study on in vitro digestion simulation of Aronia melanocarpa and properties and application of its proanthocyanidins[D]. Guangzhou: South China University of Technology, 2020. [28] 李艺萌, 李文芝, 钟瑞芳, 等. 黑菇多糖的提取工艺优化及理化性质和抗氧化活性研究[J]. 河南工业大学学报(自然科学版),2020,41(3):19−26. [LI Y M, LI W Z, ZHONG R F, et al. Study on extraction process optimization, physicochemical properties, and antioxidant activity of polysaccharide from Russula adusta (Pers.) FrJ]. Journal of Henan University of Technology (Natural Science Edition),2020,41(3):19−26. [29] 许女, 贾瑞娟, 陈旭峰, 等. 鸡腿菇子实体多糖的体内、体外抗氧化活性[J]. 中国食品学报,2019,19(1):34−40. [XU N, JIA R J, CHEN X F, et al. Antioxidant activity in vitro andin vivo of polysaccharide from Coprinus comatus[J]. Journal of Food Science and Technology,2019,19(1):34−40. doi: 10.16429/j.1009-7848.2019.01.005 [30] 董博斐, 彭文欣, 杨凤霞, 等. 红平菇胞外多糖体外抗氧化及对高血脂小鼠体内抗氧化能力探究[J]. 食品工业科技,2021,42(5):305−310. [DU B F, PENG W X, YANG F X, et al. Study on the antioxidant capacity of extracellular polysaccharides of Pleurotus djamor in vitro and in hyperlipidemia mice[J]. Science and Technology of Food Industry,2021,42(5):305−310. [31] 王箴言, 夏晴, 王玉, 等. 桦褐孔菌不同多糖组分的体内、外抗氧化活性[J]. 中国食品学报,2021,21(8):152−158. [WANG Z Y, XIA Q, WANG Y, et al. Antioxidant activity of different polysaccharide components of Inonotus obliquus in vitro and in vivo[J]. Chinese Journal of Food Science,2021,21(8):152−158. doi: 10.16429/j.1009-7848.2021.08.014 [32] 庄伟. 黑木耳多糖的提取、结构解析及活性功能研究[D]. 上海: 华东理工大学, 2020.ZHUANG W. Study on extraction, structural analysis and active function of polysaccharide isolated from Auricularia auricula-judae (Bull)[D]. Shanghai: East China University of Science and Technology, 2020. [33] LI X X, JIANG Z H, ZHOU B, et al. Hepatoprotective effect of gastrodin against alcohol-induced liver injury in mice[J]. Journal of Physiology and Biochemistry,2018,75(1):29−37. [34] AGRAWAL S, DHIMAN R K, LIMDI J K. Evaluation of abnormal liver function tests[J]. Postgraduate Medical Journal,2016,92(1086):223−234. doi: 10.1136/postgradmedj-2015-133715 [35] 欧志强. 碱性磷酸酶(ALP)在妊娠晚期的监测和变化分析[J]. 医学检验与临床,2017,28(8):43−44. [OU Z Q. Monitoring and analysis of alkaline phosphatase (ALP) in late pregnancy[J]. Clin Exp Clin,2017,28(8):43−44. doi: 10.3969/j.issn.1673-5013.2017.08.013 [36] 梁强. 连钱草抗泌尿系草酸钙结石的药理作用及其机制研究[D]. 兰州: 兰州大学, 2017.LIANG Q. Study on pharmacological effects and mechanism of Limonium chinense against urinary calcium oxalate stones[D]. Lanzhou: Lanzhou University, 2017. [37] OWOJUYIGBE O S, LARBIE C, FIREMPONG C K, et al. Hura crepitans stem bark extract: A potential remedy to sub-acute liver damage[J]. Journal of Ethnopharmacology,2022,284:114768. doi: 10.1016/j.jep.2021.114768 [38] HUANG D, LI C, CHEN Q, et al. Identification of polyphenols from Rosa roxburghii Tratt pomace and evaluation of in vitro and in vivo antioxidant activity[J]. Food Chemistry,2022,377:131922. doi: 10.1016/j.foodchem.2021.131922 [39] LI C X, SHEN L R. New observations on the effect of Camellia oil on fatty liver disease in rats[J]. Journal of Zhejiang University. Science. B,2020,21(8):657−667. [40] 吴奇辉. 紫马铃薯花色苷分离纯化及降脂减肥活性研究[D]. 杭州: 浙江大学, 2014.WU Q H. Isolation and purification of anthocyanins from purple potato and their lipid-reducing activity[D]. Hangzhou: Zhejiang University, 2014. -