Anti-glioma Effect and Mechanism of Andrographolide on Human U251 Glioma Cells
-
摘要: 目的:应用网络药理学、生物信息学方法,结合体外实验,研究穿心莲内酯(Andrographolide,AND)对人神经胶质瘤U251细胞的抑制作用及机制。方法:通过网络药理学手段,根据AND的结构预测其神经胶质瘤相关靶点。应用生物信息学方法,筛选出枢纽基因进行基因本体(Gene Ontology,GO)分子功能及基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析以确定与其相关的信号通路,再进行分子对接,研究AND与上述靶点的结合活性,最后进行基因富集分析(Gene Set Enrichment Analysis,GSEA),通过神经胶质瘤样本和正常样本的比较,分析枢纽基因的表达差异并获得其Kaplan-Meier生存曲线。在上述基础上,在人源神经胶质瘤细胞U251观察AND对其生长的影响及形态变化,并检测AND在蛋白质水平对PI3K/AKT通路的影响。结果:通过网络药理学手段获得AND的40个神经胶质瘤相关靶点,并应用生物信息学方法筛选出10个枢纽基因,AND与其有较强的结合活性。GO、KEGG富集分析结果显示,上述枢纽基因参与神经元凋亡过程的调控、活性氧代谢等生物过程,且与PI3K/AKT等信号通路有关。GSEA富集分析提示PI3K/AKT-mTOR等信号通路在神经胶质瘤干细胞中显著上调。枢纽基因中HSP90AA1、HSP90AB1、RHOA、CDK2、MET在神经胶质瘤样本与正常样本间存在显著差异,Kaplan-Meier生存曲线显示低表达的枢纽基因BCL2L1、CDK2、SOD2、MET有较高的生存率。体外研究发现,AND时间、浓度依赖性地抑制U251细胞的生长。在AND的作用下,U251细胞出现变圆、皱缩,并显著降低PI3K/AKT通路相关蛋白p-PI3K、p-AKT、p-PI3K/PI3K、p-AKT/AKT蛋白的表达。结论:AND可抑制人神经胶质瘤U251细胞增殖,其作用机制与PI3K/AKT信号通路相关。
-
关键词:
- 穿心莲内酯 /
- U251 /
- PI3K/AKT信号通路 /
- 网络药理学 /
- 生物信息学
Abstract: Objective: To investigate the anti-glioma effect and mechanism of AND on human glioma U251 cells via network pharmacology, bioinformatics and in vitro experiments. Methods: Network pharmacology was used to predict glioma-related targets based on the structure of AND. The hub genes were selected by bioinformatics, analyzed by gene ontology (GO) molecular function and kyoto encyclopedia of genes and genomes enrichment analysis (KEGG) to determine their related signaling pathways. Molecular docking was conducted to study the binding activity of AND with the above targets. Finally, gene set enrichment analysis (GSEA) was performed, analyzing the expression differences of hub genes and the Kaplan-Meier survival curve by comparing glioma samples with normal samples. On the above basis, the effects of AND on the growth and morphological changes of human glioma U251 cells were observed, the effects of AND on the PI3K/AKT pathway were detected. Results: A total of 40 glioma related targets of AND were identified by network pharmacology, and 10 hub genes were screened out by bioinformatics method. AND had high binding activity to hub genes. GO and KEGG enrichment analysis results showed that the hub genes were related to biological processes such as the regulation of neuronal apoptosis, reactive oxygen metabolism, and were related to PI3K/AKT signaling pathways. GSEA enrichment analysis suggested that PI3K/AKT-mTOR and other signaling pathways were significantly up-regulated in glioma cells. Among the hub genes, HSP90AA1, HSP90AB1, RHOA, CDK2 and MET showed significant differences between glioma samples and normal samples. Kaplan-Meier survival curve showed that low expression of genes like BCL2L1, CDK2, SOD2 and MET had higher survival rates. In the in vitro studies, AND inhibited the growth of U251 cells in both time-dependent and dose-dependent manners. After the administration of AND, U251 cells became round and shriveled, which significantly decreased the expression of p-PI3K, p-AKT, p-PI3K/PI3K, p-AKT/AKT to the PI3K/AKT pathway. Conclusion: AND can inhibit the proliferation of human glioma U251 cells, which mechanism is related to the PI3K/AKT signaling pathway.-
Key words:
- andrographolide /
- U251 /
- PI3K/AKT signaling pathway /
- network pharmacology /
- bioinformatics
-
表 1 数据库信息
Table 1. Database information
数据库名称 数据库地址 PubChem https://pubchem.ncbi.nlm.nih.gov/ PharmMapper http://www.lilab-ecust.cn/PharmMapper/ Uniprot https://www.uniprot.org/ GeneCards https://www.GeneCards.org/ STRING https://string-db.org/ DAVID https://david.ncifcrf.gov/ GEO https://www.ncbi.nlm.nih.gov/geo/ TCGA https://portal.gdc.cancer.gov/ GEPIA http://gepia.cancer-pku.cn/index.htmL 表 2 枢纽基因的蛋白信息与分子对接最低结合能
Table 2. Protein information of hub genes and the lowest binding energy for molecular docking
基因名称 PDB数据库ID 蛋白质名称 结合能(kcal·mol−1) HSP90AA1 6TN5 Heat shock protein HSP 90-alpha −8.0 MAPK14 6SP9 Mitogen-activated protein kinase 14 −8.4 BCL2L1 7JGW Bcl-2-like protein 1 −9.2 IGF1R 1TGR Insulin-like growth factor IA −7.1 RHOA 2CE2 GTPASE HRAS −6.8 HSP90AB1 6N8Y Heat shock protein HSP 90-beta −8.5 PARP1 5LX6 Poly [ADP-ribose] polymerase 10 −9.5 CDK2 6Q4G Cyclin-dependent kinase 2 −8.3 MET 5D8V High-potential iron-sulfur protein −10.1 SOD2 1PL4 Superoxide dismutase [Mn], mitochondrial −8.3 -
[1] CHEN R, SMITH-COHN M, COHEN A L, et al. Glioma subclassifications and their clinical significance[J]. Neurotherapeutics,2017,14(2):284−297. doi: 10.1007/s13311-017-0519-x [2] WANG Y, ZHANG F, XIONG N, et al. Remodelling and treatment of the blood-brain barrier in glioma[J]. Cancer Manag Res,2021,13:4217−4232. doi: 10.2147/CMAR.S288720 [3] TAJAN M, VOUSDEN K H. Dietary approaches to cancer therapy[J]. Cancer Cell,2020,37(6):767−785. doi: 10.1016/j.ccell.2020.04.005 [4] DAI Y, CHEN S R, CHAI L, et al. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide[J]. Crit Rev Food Sci Nutr,2019,59(sup1):S17−S29. doi: 10.1080/10408398.2018.1501657 [5] ISLAN M T, ALI E S, UDDIN S J, et al. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer[J]. Cancer Lett,2018,420:129−145. doi: 10.1016/j.canlet.2018.01.074 [6] YUAN M, MENG W, LIAO W, et al. Andrographolide antagonizes TNF-α-induced IL-8 via inhibition of NADPH Oxidase/ROS/NF-κB and Src/MAPKs/AP-1 axis in human colorectal cancer HCT116 cells[J]. J Agric Food Chem,2018,66(20):5139−5148. doi: 10.1021/acs.jafc.8b00810 [7] SOO H L, QUAH S Y, SULAIMAN I, et al. Advances and challenges in developing andrographolide and its analogues as cancer therapeutic agents[J]. Drug Discov Today,2019,24(9):1890−1898. doi: 10.1016/j.drudis.2019.05.017 [8] GONG P, ZHANG W, ZOU C, et al. Andrographolide attenuates blood-brain barrier disruption, neuronal apoptosis, and oxidative stress through activation of Nrf2/HO-1 signaling pathway in subarachnoid hemorrhage[J]. Neurotox Res,2022,40(2):508−519. doi: 10.1007/s12640-022-00486-7 [9] VETVICKA V, VANNUCCI L. Biological properties of andrographolide, an active ingredient of Andrographis paniculata: A narrative review[J]. Ann Transl Med,2021,9(14):1186. doi: 10.21037/atm-20-7830 [10] 吴琪琪, 郭健敏, 陈伟鸿, 等. 基于网络药理学与分子对接探究雷公藤内酯治疗结直肠癌的作用机制[J]. 今日药学,2021,31(9):658−663. [WU Q Q, GUO J M, CHEN W H, et al. Study on the mechanism of triptolide in the treatment of colorectal cancer based on network pharmacology and molecular connection[J]. Today Pharmacy,2021,31(9):658−663. doi: 10.12048/j.issn.1674-229X.2021.09.002 [11] 赵志恒, 毕经会, 叶诗洁, 等. 基于网络药理学和分子对接探究黄芪-女贞子治疗免疫缺陷病的作用机制[J]. 食品工业科技,2022,43(3):374−383. [ZHAO Z H, BI J H, YE S S, et al. Study on the mechanism of astragalus membranaceus and Ligustrum lucidum in the treatment of immune deficiency disease based on network pharmacology and molecular docking[J]. Science and Technology of Food Industry,2022,43(3):374−383. doi: 10.13386/j.issn1002-0306.2021060024 [12] HOPKINS A L. Network pharmacology: The next paradigm in drug discovery[J]. Nat Chem Biol,2008,4(11):682−690. doi: 10.1038/nchembio.118 [13] GUO W, HUANG J, WANG N, et al. Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula Zuojin pill in suppressing hepatocellular carcinoma[J]. Front Pharmacol,2019,10:1185. doi: 10.3389/fphar.2019.01185 [14] ZHANG L, HAN L, WANG X, et al. Exploring the mechanisms underlying the therapeutic effect of salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking[J]. Biosci Rep,2021,41(6):BSR20203520. doi: 10.1042/BSR20203520 [15] SONG X, ZHANG Y, DAI E, et al. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking[J]. Int Immunopharmacol,2020,80:106179. doi: 10.1016/j.intimp.2019.106179 [16] REIMAND J, ISSERLIN, VOISIN V, et al. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, cytoscape and enrichmentmap[J]. Nat Protoc,2019,14(2):482−517. doi: 10.1038/s41596-018-0103-9 [17] HU J, QIU D, YU A, et al. YTHDF1 is a potential pan-cancer biomarker for prognosis and immunotherapy[J]. Front Oncol,2021,11:607224. doi: 10.3389/fonc.2021.607224 [18] XU Y, SUI L, QIU B, et al. ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia[J]. Am J Physiol Cell Physiol,2019,316(4):C481−C491. doi: 10.1152/ajpcell.00404.2018 [19] LI L, XU B, LI C R, et al. Anti-proliferation and apoptosis-inducing effects of sodium aescinate on retinoblastoma Y79 cells[J]. Int J Ophthalmol,2020,13(10):1546−1553. doi: 10.18240/ijo.2020.10.06 [20] JIA X, WEN Z, SUN Q, et al. Apatinib suppresses the proliferation and apoptosis of gastric cancer cells via the PI3K/Akt signaling pathway[J]. J BUON,2019,24(5):1985−1991. [21] ZUEHLKE A D, BEEBE K, NECKERS L, et al. Regulation and function of the human HSP90AA1 gene[J]. Gene,2015,570(1):8−16. doi: 10.1016/j.gene.2015.06.018 [22] FAGUNDES D J, CARRARA F L, TEIXEIRA W A, et al. The role of the exogenous supply of adenosine triphosphate in the expression of Bax and Bcl2L1 genes in intestinal ischemia and reperfusion in rats 1[J]. Acta Cir Bras,2018,33(10):889−895. doi: 10.1590/s0102-865020180100000003 [23] JIANG J, WANG W, FANG D, et al. MicroRNA-186 targets IGF-1R and exerts tumor-suppressing functions in glioma[J]. Mol Med Rep,2017,16(5):7821−7828. doi: 10.3892/mmr.2017.7586 [24] WANG B, WANG K, JIN T, et al. NCK1-AS1 enhances glioma cell proliferation, radioresistance and chemoresistance via miR-22-3p/IGF1R ceRNA pathway[J]. Biomed Pharmacother,2020,129:110395. doi: 10.1016/j.biopha.2020.110395 [25] HAASE M, FITZE G. HSP90AB1: Helping the good and the bad [J]. Gene, 2016, 575(2 Pt 1): 171−186. [26] ZHANG R, BANIK N L, RAY S K. Combination of all-trans retinoic acid and interferon-gamma upregulated p27(kip1) and down regulated CDK2 to cause cell cycle arrest leading to differentiation and apoptosis in human glioblastoma LN18 (PTEN-proficient) and U87MG (PTEN-deficient) cells[J]. Cancer Chemother Pharmacol,2008,62(3):407−416. doi: 10.1007/s00280-007-0619-0 [27] TASSINARI V, CESARINI V, TOMASELLI S, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism[J]. Genome Biol,2021,22(1):51. doi: 10.1186/s13059-021-02271-9 [28] CHENG F, GUO D. MET in glioma: Signaling pathways and targeted therapies[J]. J Exp Clin Cancer Res,2019,38(1):270. doi: 10.1186/s13046-019-1269-x [29] GAO Y, LIU P, SHI R. Anlotinib as a molecular targeted therapy for tumors[J]. Oncol Lett,2020,20(2):1001−1014. doi: 10.3892/ol.2020.11685 [30] 黄桔, 李晓文, 蒋艳平, 等. 穿心莲内酯对人胶质瘤细胞U87-MG的生长抑制及凋亡诱导作用的研究[J]. 右江民族医学院学报,2020,42(6):685−689, 697. [HUANG J, LI X W, JIANG Y P, et al. Effects of andrographolide on growth inhibition and apoptosis induction of human glioma cells U87-MG[J]. Journal of Youjiang Medical College for Nationalities,2020,42(6):685−689, 697. doi: 10.3969/j.issn.1001-5817.2020.06.002 [31] SHORNING B Y, DASS M S, SMALLEY M J, et al. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling[J]. Int J Mol Sci,2020,21(12):4507. doi: 10.3390/ijms21124507 [32] EDIRIWEERA M K, TENEKOON K H, SAMARAKOON S R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance[J]. Semin Cancer Biol,2019,59:147−160. doi: 10.1016/j.semcancer.2019.05.012 [33] HOLAND K, SALM F, ARCARO A. The phosphoinositide 3-kinase signaling pathway as a therapeutic target in grade IV brain tumors[J]. Curr Cancer Drug Targets,2011,11(8):894−918. doi: 10.2174/156800911797264743 [34] SHAHCHERAGHI S H, TCHOKINTE-NANA V, LOTFI M, et al. Wnt/beta-catenin and PI3K/Akt/mTOR signaling pathways in glioblastoma: Two main targets for drug design: A review[J]. Curr Pharm Des,2020,26(15):1729−1741. doi: 10.2174/1381612826666200131100630 [35] RODRIGUEZ M N, ART T, ROLLIN F, et al. Ventilatory mechanics in healthy calves during helium-oxygen breathing[J]. Zentralbl Veterinarmed A,1990,37(4):241−246. [36] ZHANG J, FAN J. Prazosin inhibits the proliferation, migration and invasion, but promotes the apoptosis of U251 and U87 cells via the PI3K/AKT/mTOR signaling pathway[J]. Exp Ther Med,2020,20(2):1145−1152. doi: 10.3892/etm.2020.8772 [37] ZHENG X, LI W, XU H, et al. Sinomenine ester derivative inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway[J]. Acta Pharm Sin B,2021,11(11):3465−3480. doi: 10.1016/j.apsb.2021.05.027 [38] ALZAHRANI A S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside[J]. Semin Cancer Biol,2019,59:125−132. doi: 10.1016/j.semcancer.2019.07.009 [39] YU L, WEI J, LIU P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer [J]. Semin Cancer Biol, 2021 Jun 25: S1044-579X(21)00188-7. -