• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

热处理和蛋白浓度对肌原纤维蛋白乳液的稳定性和流变特性的影响

郝梦 毛书灿 周志 汪兰 熊光权 石柳

郝梦,毛书灿,周志,等. 热处理和蛋白浓度对肌原纤维蛋白乳液的稳定性和流变特性的影响[J]. 食品工业科技,2022,43(23):56−63. doi:  10.13386/j.issn1002-0306.2022020066
引用本文: 郝梦,毛书灿,周志,等. 热处理和蛋白浓度对肌原纤维蛋白乳液的稳定性和流变特性的影响[J]. 食品工业科技,2022,43(23):56−63. doi:  10.13386/j.issn1002-0306.2022020066
HAO Meng, MAO Shucan, ZHOU Zhi, et al. Effect of Heat Treatment and Protein Concentration on the Stability and Rheological Properties of Myofibrillar Protein Emulsion[J]. Science and Technology of Food Industry, 2022, 43(23): 56−63. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020066
Citation: HAO Meng, MAO Shucan, ZHOU Zhi, et al. Effect of Heat Treatment and Protein Concentration on the Stability and Rheological Properties of Myofibrillar Protein Emulsion[J]. Science and Technology of Food Industry, 2022, 43(23): 56−63. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020066

热处理和蛋白浓度对肌原纤维蛋白乳液的稳定性和流变特性的影响

doi: 10.13386/j.issn1002-0306.2022020066
基金项目: 湖北省自然科学基金(2020CFB466);湖北省农业科技创新中心重大科技研发项目(2020-620-000-002-03)。
详细信息
    作者简介:

    郝梦(1997−),女,硕士研究生,研究方向:水产品加工,E-mail:haomeng_1997@163.com

    通讯作者:

    石柳(1988−),女,博士,助理研究员,研究方向:水产品加工与综合利用,E-mail:shiliu@hbaas.com

  • 中图分类号: TS254.9

Effect of Heat Treatment and Protein Concentration on the Stability and Rheological Properties of Myofibrillar Protein Emulsion

  • 摘要: 为了获得稳定的肌原纤维蛋白乳液,本文以冷冻白鲢鱼糜为原料提取肌原纤维蛋白,研究热处理(85 ℃ 10 min)和蛋白浓度(5、10、15、20、25 mg/mL)对肌原纤维蛋白溶液聚集比例、粒径、电位和微观结构等及对大豆油-肌原纤维蛋白乳液结构、表观粘度和色度的影响。结果表明:热处理使肌原纤维蛋白溶液中的蛋白发生聚集,使乳液粒径增大,表观粘度减小,乳液的L*b*增加,疏水性减弱。随蛋白浓度的增加,未热处理组和热处理组的肌原纤维蛋白溶液的表观粘度逐渐增大,电位值波动上升,且分别在蛋白浓度为10和25 mg/mL时平均粒径最小。随蛋白浓度增加,肌原纤维蛋白乳液中参与乳化的油滴数量增多,油滴粒径减小,聚结程度减小。因此,在油相比为0.6,蛋白浓度为10~20 mg/mL时,热处理组的肌原纤维蛋白乳液液滴小而分散,表观粘度低,乳液稳定性高。本研究对开发稳定的肌原纤维蛋白乳液具有重要意义。
  • 图  1  不同浓度下的MP组和MPA组肌原纤维蛋白溶液的SDS-PAGE凝胶电泳

    Figure  1.  SDS-PAGE gel electrophoresis of myofibrillar protein solution in MP and MPA groups at different concentrations

    图  2  不同蛋白浓度下热处理后的MPA组蛋白聚集比例

    Figure  2.  Protein aggregation ratio of MPA group after heat treatment at different protein concentrations

    注:不同字母表示差异性显著(P<0.05),图4同。

    图  3  热处理对肌原纤维蛋白溶液粒径分布的影响

    Figure  3.  Effect of heat treatment on particle size distribution of myofibrillar protein solution

    注:A:MP,未加热组;B:MPA,加热组。

    图  4  热处理对肌原纤维蛋白溶液电位的影响

    Figure  4.  Effect of heat treatment on myofibrillar protein solution potential

    图  5  热处理对MP(A)和MPA组(B)肌原纤维蛋白溶液粘度的影响

    Figure  5.  Effect of heat treatment on myofibrillar protein solution viscosity in MP (A) and MPA groups (B)

    图  6  不同浓度和油相比的MP组乳液(A)和MPA组乳液(B)24 h静置情况

    Figure  6.  Emulsion of MP group (A) and MPA group (B) standing for 24 h with different concentrations and oil

    图  7  肌原纤维蛋白乳液0和24 h(4 ℃放置)放置正拍图

    Figure  7.  Positive pictures of myofibrillar protein emulsion at 0 and 24 h (placed at 4 ℃)

    图  8  热处理对MP和MPA组乳液微观形貌的影响

    Figure  8.  Influence of heat treatment on micromorphology of emulsion in MP and MPA groups

    图  9  MP(A)和MPA组(B)乳液的红外光谱图

    Figure  9.  Infrared spectrogram of MP (A) and MPA (B) emulsion groups

    图  10  MP(A)和MPA组(B)肌原纤维蛋白乳液粘度随剪切速率的变化曲线

    Figure  10.  Myofibrillar protein emulsion viscosity curve with shear rate in MP (A) and MPA groups (B)

    表  1  不同浓度下MP组和MPA组肌原纤维蛋白溶液的平均粒径(D(4,3)

    Table  1.   Average particle size of myofibrillar protein solution in MP group and MPA group at different concentrations (D(4,3))

    蛋白浓度(mg/mL)510152025
    MP(μm)152.8±6.5b92.7±9.6c181.7±10.7a163.4±4.9b148.8±7.3b
    MPA(μm)238.3±5.7a179.2±2.4c198.3±9.7b183.3±6.2c166.1±2.3d
    注:同行不同小写字母表示差异性显著(P<0.05)。
    下载: 导出CSV

    表  2  热处理对MP和MPA组乳液色度的影响

    Table  2.   Effect of heat treatment on chromaticity of emulsion in MP and MPA groups

    样品蛋白浓度(mg/mL)L*a*b*
    MP561.6±0.6e−1.8±0.1c3.5±0.3c
    1078.2±0.3c−1.9±0.1d6.0±0.3a
    1581.1±0.1b−1.6±0.0ab5.2±0.2b
    2087.5±0.2a−1.6±0.0ab5.1±0.0b
    2563.8±0.3d−1.5±0.1a2.3±0.4d
    MPA550.4±1.8d−1.3±0.0a1.7±0.1c
    1082.2±0.8c−1.9±0.0c5.5±0.1b
    1584.8±0.6b−1.7±0.0b5.3±0.0b
    2087.5±0.1ab−1.9±0.0c6.0±0.1a
    2589.3±1.0a−1.9±0.0c6.2±0.1a
    注:同列不同小写字母表示同一样品不同浓度间差异性显著(P<0.05)。
    下载: 导出CSV
  • [1] MÁRQUEZ A L, SALVATORE G N, OTERO R G, et al. Impact of freeze-thaw treatment on the stability of calcium-fortified soy beverages[J]. LWT-Food Science and Technology,2015,62(1):474−481. doi:  10.1016/j.lwt.2015.01.005
    [2] RAYNER M, MARKU D, ERIKSSON M, et al. Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,458:48−62.
    [3] BERTON-CARABIN C C, SCHROËN K. Pickering emulsions for food applications: Background, trends, and challenges[J]. Annual Review of Food Science and Technology,2015,6:263−297. doi:  10.1146/annurev-food-081114-110822
    [4] TANG C H, LIU F. Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism[J]. Food Hydrocolloids,2013,30(1):61−72. doi:  10.1016/j.foodhyd.2012.05.008
    [5] DESTRIBATS M, ROUVET M, GEHIN-DELVAL C, et al. Emulsions stabilised by whey protein microgel particles: Towards food-grade Pickering emulsions[J]. Soft Matter,2014,10(36):6941−6954. doi:  10.1039/C4SM00179F
    [6] PIZONES RUIZ-HENESTROSA V M, MARTINEZ M J, PATINO J M R, et al. A dynamic light scattering study on the complex assembly of glycinin soy globulin in aqueous solutions[J]. Journal of the American Oil Chemists' Society,2012,89(7):1183−1191.
    [7] BI A Q, XU X B, GUO Y, et al. Ultrasound pre-fractured casein and in-situ formation of high internal phase emulsions[J]. Ultrasonics Sonochemistry,2020,64:104916. doi:  10.1016/j.ultsonch.2019.104916
    [8] TAN H, TU Z, JIA H, et al. Hierarchical porous protein scaffold templated from high internal phase emulsion costabilized by gelatin and gelatin nanoparticles[J]. Langmuir,2018,34(16):4820−4829. doi:  10.1021/acs.langmuir.7b04047
    [9] 袁程程, 张坤生, 任云霞. 沙蒿胶对虾蛄肌原纤维蛋白凝胶特性的影响[J]. 食品科学,2017,38(5):111−115. [YUAN Chengcheng, ZHANG Kunsheng, REN Yunxia. Effects of Artemisia sphaerea gum on myofibrin gel properties of mantis shrimp[J]. Food Science,2017,38(5):111−115. doi:  10.7506/spkx1002-6630-201705018
    [10] 盖静. 不同加热温度对鳙鱼肌球蛋白聚集行为的影响及其机理研究[D]. 镇江: 江苏大学, 2016.

    GAI Jing. Study on the aggregation behavior and mechanism of bighead carp (Aristichthys nobilis) myosin affected by heating temperature[D]. Zhenjiang: Jiangsu University, 2016.
    [11] 康怀彬, 邹良亮, 张慧芸, 等. 高温处理对牛肉蛋白质化学作用力及肌原纤维蛋白结构的影响[J]. 食品科学,2018,39(23):80−86. [KANG Huaibin, ZOU Liangliang, ZHANG Huiyun, et al. Effect of high temperature treatment on chemical forces of beef proteins and structure of myofibrillar protein[J]. Food Science,2018,39(23):80−86. doi:  10.7506/spkx1002-6630-201823013
    [12] 汪媛. 肌原纤维蛋白-小麦水解蛋白相互作用及其共乳化体系的影响因素研究[D]. 广州: 华南理工大学, 2019.

    WANG Yuan. Study on the interaction between myofibrin and wheat hydrolyzed protein and the influencing factors of co-emulsification system[D]. Guangzhou: South China University of Technology, 2019.
    [13] LI L, CAI R, WANG P, et al. Manipulating interfacial behavior and emulsifying properties of myosin through alkali-heat treatment[J]. Food Hydrocolloids,2018,85:69−74. doi:  10.1016/j.foodhyd.2018.06.044
    [14] GORNALL A G, BARDAWILL C J, DAVID M M. Determination of serum proteins by means of the biuret reaction[J]. J Biol Chem,1949,177(2):751−766. doi:  10.1016/S0021-9258(18)57021-6
    [15] 朱萌, 石柳, 汪兰, 等. 基于Image J软件的肌原纤维蛋白SDS-PAGE优化[J]. 湖北农业科学,2017,56(24):4839−4843. [ZHU Meng, SHI Liu, WANG Lan, et al. SDS-PAGE optimization of myofibrillar protein gel based on lmage J software[J]. Hubei Agricultural Sciences,2017,56(24):4839−4843.
    [16] ZHANG Z, YANG Y, ZHOU P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry,2017,217:678−686. doi:  10.1016/j.foodchem.2016.09.040
    [17] DIAO X, GUAN H, ZHAO X, et al. Properties and oxidative stability of emulsions prepared with myofibrillar protein and lard diacylglycerols[J]. Meat Science,2016,115:16−23. doi:  10.1016/j.meatsci.2016.01.001
    [18] 朱雪峰. 大豆分离蛋白热聚集颗粒稳定 Pickering 乳液的冻融稳定性[D]. 广州: 华南理工大学, 2017.

    ZHU Xuefeng. Freezing-thawing stability of Pickering emulsion stabilized by heat aggregation particles of soybean protein isolate[D]. Guangzhou: South China University of Technology, 2017.
    [19] 胡亚芹, 胡庆兰, 杨水兵, 等. 不同冻结方式对带鱼品质影响的研究[J]. 现代食品科技,2014,30(2):23−30. [HU Yaqin, HU Qinglan, YANG Shuibing, et al. Effects of different freezing methods on hairtail quality[J]. Modern Food Science and Technology,2014,30(2):23−30. doi:  10.13982/j.mfst.1673-9078.2014.02.020
    [20] 朱明华, 胡坪. 仪器分析[M]. 4版. 北京高等教育出版社, 2009.

    ZHU Minghua, HU Ping. Instrumental analysis[M]. 4th Ed. Beijing Higher Education Press, 2009.
    [21] 俞启. 基于近红外光谱技术建立鱼糜制品品质快速检测的方法[D]. 杭州: 浙江工商大学, 2011.

    YU Qi. Rapid determination of the quality of surimi-based products using near infrared spectroscopy[D]. Hangzhou: Zhejiang Gongshang University, 2011
    [22] 畅鹏, 杜鑫, 杨东晴, 等. 蛋白质热聚集行为机理及其对蛋白质功能特性影响的研究进展[J]. 食品工业科技,2018,39(24):318−325. [CHANG Peng, DU Xin, YANG Dongqing, et al. Research progress on the mechanism of protein heat aggregation and its effect on protein functional properties[J]. Science and Technology of Food Industry,2018,39(24):318−325. doi:  10.13386/j.issn1002-0306.2018.24.054
    [23] 丁群文, 唐传核. 蛋白浓度对热致大豆球蛋白颗粒 Pickering 乳液稳定剂的影响[J]. 粮食与油脂,2015,28(7):45−49. [DING Qunwen, TANG Chuanhe. Effect of protein concentration on Pickering emulsion stabilizer of heat-induced soybean globulin particles[J]. Grain & Fat,2015,28(7):45−49. doi:  10.3969/j.issn.1008-9578.2015.07.012
    [24] MORO A, BÁEZ G D, BALLERINI G A, et al. Emulsifying and foaming properties of β-lactoglobulin modified by heat treatment[J]. Food Research International,2013,51(1):1−7. doi:  10.1016/j.foodres.2012.11.011
    [25] NICORESCU I, VIAL C, TALANSIER E, et al. Comparative effect of thermal treatment on the physicochemical properties of whey and egg white protein foams[J]. Food Hydrocolloids,2011,25(4):797−808. doi:  10.1016/j.foodhyd.2010.09.020
    [26] WANG J M, YANG X Q, YIN S W, et al. Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure treatment[J]. Journal of Agricultural and Food Chemistry,2011,59(13):7324−7332. doi:  10.1021/jf201957r
    [27] RHA C K, PRADIPASENA P. Viscosity of proteins, ch. 2[J]. Functional Properties of Food Macromolecules, JR Michell and DA Ledward (Ed.),1986:302.
    [28] ZHU H, KIM Y D, DE KEE D. Non-newtonian fluids with a yield stress[J]. Journal of Non-Newtonian Fluid Mechanics,2005,129(3):177−181. doi:  10.1016/j.jnnfm.2005.06.001
    [29] 畅柯飞. 热处理对蛋清蛋白聚集行为及界面性质调控作用机制研究[D]. 长春: 吉林大学, 2021.

    CHANG Kefei. Effect of heat treatment on protein aggregation behavior and interface properties of egg white[D]. Changchun: Jilin University, 2021.
    [30] 刘洋. 大豆蛋白纳米颗粒稳定的乳液及其油凝胶性质[D]. 无锡: 江南大学, 2016.

    LIU Yang. Stable emulsion and oil-gel properties of soybean protein nanoparticles[D]. Wuxi: Jiangnan University, 2016.
    [31] 万红兵. 高熟度牛肉嫩度特异性及其肌原纤维蛋白结构变化机制研究[D]. 北京: 中国农业科学院, 2020.

    WAN Hongbing. Study on tenderness specificity and mechanism of myofibrillar protein structure change of beef with high degree of doneness[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
    [32] DE FIGUEIREDO FURTADO G, PEREIRA R N C, VICENTE A A, et al. Cold gel-like emulsions of lactoferrin subjected to ohmic heating[J]. Food Research International,2018,103:371−379. doi:  10.1016/j.foodres.2017.10.061
    [33] 李儒仁, 谢振峰, 荣良燕, 等. 肌原纤维蛋白界面膜协同凝胶基质提高乳液的稳定性[J]. 中国食品学报,2019,19(10):68−76. [LI Ruren, XIE Zhenfeng, RONG Liangyan, et al. Myofibrin interface membrane combined with gel matrix to improve the stability of emulsion[J]. Chinese Journal of Food Science,2019,19(10):68−76. doi:  10.16429/j.1009-7848.2019.10.008
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回