• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

水合有机溶液体系中类胡萝卜素聚集体的探究

赵英源 贾慧慧 李紫薇 梁晋 李瑞芳 陈迪 王静

赵英源,贾慧慧,李紫薇,等. 水合有机溶液体系中类胡萝卜素聚集体的探究[J]. 食品工业科技,2022,43(23):42−49. doi:  10.13386/j.issn1002-0306.2022010152
引用本文: 赵英源,贾慧慧,李紫薇,等. 水合有机溶液体系中类胡萝卜素聚集体的探究[J]. 食品工业科技,2022,43(23):42−49. doi:  10.13386/j.issn1002-0306.2022010152
ZHAO Yingyuan, JIA Huihui, LI Ziwei, et al. Study on Aggregation of Carotenoids in Hydrated Organic Solution System[J]. Science and Technology of Food Industry, 2022, 43(23): 42−49. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022010152
Citation: ZHAO Yingyuan, JIA Huihui, LI Ziwei, et al. Study on Aggregation of Carotenoids in Hydrated Organic Solution System[J]. Science and Technology of Food Industry, 2022, 43(23): 42−49. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022010152

水合有机溶液体系中类胡萝卜素聚集体的探究

doi: 10.13386/j.issn1002-0306.2022010152
基金项目: 国家自然科学基金青年科学基金项目(31901677,31801512);河南工业大学高层次人才科研启动基金项目(2019BS021);河南工业大学青年骨干教师培育计划(21420167);国家留学基金委公派访学项目(202008410088);河南工业大学自科创新基金支持计划专项资助(2020ZKCJ23)。
详细信息
    作者简介:

    赵英源(1991−),女,博士,讲师,研究方向:纳米药物,E-mail:anxiaoying2010@163.com

    通讯作者:

    赵英源(1991−),女,博士,讲师,研究方向:纳米药物,E-mail:anxiaoying2010@163.com

  • 中图分类号: O629.4

Study on Aggregation of Carotenoids in Hydrated Organic Solution System

  • 摘要: 类胡萝卜素具有多种对人体有益的生理活性,在一定条件下分子可自聚集形成不同类型的聚集体。本文主要以水合有机溶液的比例和加样顺序为关键因素,探究其对三种代表性类胡萝卜素(虾青素、叶黄素、β-胡萝卜素)聚集体的类型(H聚集体、M单体、J聚集体)、形成条件和稳定性的影响。分别将虾青素丙酮溶液、叶黄素乙醇溶液、β-胡萝卜素丙酮溶液以水入有机和有机入水两种不同滴加顺序,按照有机溶剂占总体积比以10%~90%的比例混合,观察类胡萝卜素小分子及其聚集体的状态并进行紫外可见吸收光谱分析。结果表明,在有机入水的加样顺序下,虾青素、叶黄素、β-胡萝卜素溶液体系下形成H聚集体的有机溶剂占总体积比分别为10%~20%、10%~50%和10%~40%,此外,虾青素在30%形成J聚集体,β-胡萝卜素在50%~70%形成J聚集体,叶黄素在60%~90%时为叶黄素单体。在水入有机的加样顺序下,形成聚集体的条件与有机入水相似。但是通过对比发现,在有机入水的加样顺序下,紫外可见光谱上吸收峰移动的现象更明显。探究聚集体稳定性发现,样品在室温(25 ℃)条件下放置24 h和48 h后,叶黄素的H聚集体类型不变,虾青素、β-胡萝卜素的H聚集体逐渐转化为J聚集体;虾青素与β-胡萝卜素的J聚集体则稳定存在。本文为类胡萝卜素及其聚集体形成条件及稳定性研究提供数据支撑,从而为今后类胡萝卜素及其聚集体在食品、药品、化妆品等领域的应用提供理论依据。
  • 图  1  三种类胡萝卜素结构图

    Figure  1.  Structure of three carotenoids

    图  2  三种类胡萝卜素与不同比例的水与有机相混合的样品图

    Figure  2.  Samples of three carotenoids mixed with different proportions of water and organic solutions

    注:A与D、B与E、C与F分别为虾青素、叶黄素和β-胡萝卜素;A、B、C为水入有机的滴加方式,D、E、F为有机入水的滴加方式。

    图  3  不同有机占比条件下虾青素溶液的紫外可见光谱图及48 h内的光谱变化

    Figure  3.  UV-vis spectra of astaxanthin solutions at different organic proportions and spectral changes within 48 h

    注:A(0 h)、B(24 h)和C(48 h)为水入有机的加样顺序;D(0 h)、E(24 h)和F(48 h)为有机入水的加样顺序。

    图  4  不同有机占比条件下叶黄素溶液的紫外可见光谱图及48 h内的光谱变化

    Figure  4.  UV-vis spectra of lutein solutions at different organic proportions and spectral changes within 48 h

    注:A(0 h)、B(24 h)和C(48 h)为水入有机的加样顺序;D(0 h)、E(24 h)和F(48 h)为有机入水的加样顺序。

    图  5  不同有机占比条件下β-胡萝卜素溶液的紫外可见光谱图及48 h内的光谱变化

    Figure  5.  UV-vis spectra of β-carotene solutions at different organic proportions and spectral changes within 48 h

    注:A(0 h)、B(24 h)和C(48 h)为水入有机的加样顺序;D(0 h)、E(24 h)和F(48 h)为有机入水的加样顺序。

  • [1] 许颖颖, 王晚晴, 华威, 等. 利用微藻提取类胡萝卜素方法研究进展[J]. 食品工业科技,2016,37(3):373−379. [XU Y Y, WANG W Q, HUA W, et al. Research progress in the extraction of carotenoids from microalgae[J]. Science and Technology of Food Industry,2016,37(3):373−379. doi:  10.13386/j.issn1002-0306.2016.03.070
    [2] ZIELINSKA M, WEOLOWSKA A, PAWLUS B, et al. Health effects of carotenoids during pregnancy and lactation[J]. Nutrients,2017,9(8):838. doi:  10.3390/nu9080838
    [3] HERNANDEZ A, MONTANEZ J, MARTINEZ G, et al. Lycopene: Progress in microbial production[J]. Trends in Food Science & Technology,2016,56:142−148.
    [4] NUNES A N, RODA A, GOUVEIA L F, et al. Astaxanthin extraction from marine crustacean waste streams: An integrate approach between microwaves and supercritical fluids[J]. ACS Sustainable Chemistry & Engineering,2021:3050−3059.
    [5] LOTFI A, SOLEIMANI M, GHASEMI N. Astaxanthin reduces demyelination and oligodendrocytes death in a rat model of multiple sclerosis[J]. Cell Journal,2021,22(4):565−571.
    [6] ROWLES J L, ERDMAN J W. Carotenoids and their role in cancer prevention[J]. Biochimica Et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2020,1865(11):158613.
    [7] LIM C, JIN K K, CHAN E J, et al. Preparation and characterization of a lutein solid dispersion to improve its solubility and stability[J]. AAPS PharmSciTech,2021,22(5):1−9.
    [8] ASS A, SAH B. Astaxanthin ameliorates high-fat diet-induced cardiac damage and fibrosis by upregulating and activating SIRT1[J]. Saudi Journal of Biological Sciences,2021,28(12):7012−7021. doi:  10.1016/j.sjbs.2021.07.079
    [9] GHADA E H, MARWA M A, GEHAN M A, et al. In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6[J]. Scientific Reports,2020,10(2):5986.
    [10] MANTOVANI R A, HAMON P, ROUSSEAU F, et al. Unraveling the molecular mechanisms underlying interactions between caseins and lutein[J]. Food Research International,2020,138:109936. doi:  10.1016/S0963-9969(20)30961-3
    [11] RUTZ J K, BORGES C D, ZAMBIAZI R C, et al. Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food[J]. Food Chemistry,2016,202(1):324−333.
    [12] 刘翔, 惠伯棣, 宫平. 类胡萝卜素分子的聚集[J]. 中国食品添加剂,2010,1(5):133−148. [LIU X, HUI B D, GONG P. A study on the molecular structure of carotenoids[J]. China Food Additives,2010,1(5):133−148. doi:  10.3969/j.issn.1006-2513.2010.05.017
    [13] JUDITH H, CHRISTOPHER N S, SEBASTIAN L, et al. Structure related aggregation behavior of carotenoids and carotenoid esters[J]. Journal of Photochemistry & Photobiology, A: Chemistry,2016,317:161−174. .
    [14] 薛长湖, 李敬, 代明琴, 等. H1、H2或J型虾青素聚集体水分散体系的制备方法与应用[P]. 山东省: CN109646425A, 2019-04-19.

    XUE C H, LI J, DAI M Q, et al. Preparation of astaxanthin by aqueous dispersion[J]. Shandong: CN109646425A, 2019-04-19.
    [15] SONJA K, KOLBE H, KORGER M, et al. Aggregation and interface behaviour of carotenoids[J]. Birkhä user Basel,2008,4:53−94.
    [16] SPANO F C. Analysis of the UV/vis and CD spectral line shapes of carotenoid assemblies: Spectral signatures of chiral H-aggregates[J]. Journal of the American Chemical Society,2009,131(12):4267−4278. doi:  10.1021/ja806853v
    [17] GIOVANNETTI R, ALIBABAEI L, PUCCIARELLI F. Kinetic model for astaxanthin aggregation in water-methanol mixtures[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2009,73(1):157−162. doi:  10.1016/j.saa.2009.02.017
    [18] 曲方. 环境对类胡萝卜素聚集体吸收及荧光光谱的影响[D]. 长春: 吉林大学, 2020.

    QU F. Effects of environment on absorption and fluorescence spectra of carotenoid aggregates[D]. Changchun: Jilin University, 2020.
    [19] ZSILA F, DELI J, SIMONYI M. Color and chirality: Carotenoid self-assemblies in flower petals[J]. Planta,2001,213(6):937−942. doi:  10.1007/s004250100569
    [20] FRANK H A , YOUNG A J , BRITTON G, et al. The photochemistry of carotenoids[M]. Springer Netherlands, 1999: 235-244.
    [21] SUBRAMANIAN B, TCHOUKANOV N, DJAOUED Y. Claude pelletierb and mathieu ferron Raman spectroscopic investigations on intermolecular interactions in aggregates and crystalline forms of trans-astaxanthin[J]. Journal of Raman Spectroscopy,2013,44(2):219−226. doi:  10.1002/jrs.4194
    [22] 魏良淑, 吴芳, 蒋夕平, 等. 基于紫外-可见光谱法研究叶黄素聚集体结构及其动力学[J]. 光谱学与光谱分析,2018,38(12):3796−3800. [WEI L S, WU F, JIANG X P, et al. Structure and dynamics of lutein aggregates based on UV-Vis spectroscopy[J]. Spectroscopy and Spectral Analysis,2018,38(12):3796−3800.
    [23] 辛伍红. 朗伯-比尔定律的适用条件与限制[J]. 化工时刊,2020,34(7):49−51. [XIN W H. Application conditions and Limitations of Lambert-Beer law[J]. Chemical Industry Times,2020,34(7):49−51. doi:  10.16597/j.cnki.issn.1002-154x.2020.07.015
    [24] ZAJAC G, LASOTA J, DUDEK M, et al. Pre-resonance enhancement of exceptional intensity in aggregation-Induced raman optical activity (AIROA) spectra of lutein derivatives[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,2017,173(9):356−360.
    [25] SALARES V R, YOUNG N M, CAREY P R, et al. Excited state (excitation) interactions in polyene aggregates. Resonance Raman and absorption spectroscopic evidence[J]. Journal of Raman Spectroscopy,1977,6(6):282−288. doi:  10.1002/jrs.1250060605
    [26] BUCHWALD M, JENCKS W P. Optical properties of astaxanthin solutions and aggregates[J]. Biochemistry,1968,7(2):834−843. doi:  10.1021/bi00842a042
    [27] 赵英源, 贾慧慧, 李紫薇, 等. 类胡萝卜素聚集体的研究进展[J]. 河南工业大学学报(自然科学版),2021,42(6):134−140. [ZHAO Y Y, JIA H H, LI Z W, et al. Research progress of carotenoid aggregates[J]. Journal of Henan University of Technology (Natural Science Edition),2021,42(6):134−140. doi:  10.16433/j.1673-2383.2021.06.018
    [28] MANTOVANI R A, HAMON P, ROUSSEAU F, et al. Unraveling the molecular mechanisms underlying interactions between caseins and lutein[J]. Food Research International,2020,138:109781. doi:  10.1016/j.foodres.2020.109781
    [29] 卢礼萍, 李明, 刘桂玲, 等. 叶黄素聚集体吸收光谱的实验分析与理论模拟[J]. 光谱学与光谱分析,2016,36(10):3287−3291. [LU L P, LI M, LIU G L, et al. Experimental analysis and theoretical simulation of absorption spectra of lutein aggregates[J]. Spectroscopy and Spectral Analysis,2016,36(10):3287−3291.
  • 加载中
图(5)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  17
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回