Research Progress on Composition, Extraction and Physiological Activity of Pea Polyphenols
-
摘要: 豌豆多酚是广泛存在于豌豆中的次级代谢产物,主要包括黄酮(白杨素、山奈酚、槲皮素)、酚酸(对香豆酸、芥子酸、阿魏酸)和单宁(儿茶素)3类组分。豌豆多酚的含量、种类及分布取决于豌豆品种,但在其生长过程中又受到环境和诱导因素的影响。豌豆多酚的提取方法由低效的溶剂萃取法,逐步向高效率、高提取率的微波萃取技术转变,其生理活性研究也逐步向分子和细胞水平发展,应用范围逐渐扩展至肉制品、水产品及面制品等产业中。为进一步了解豌豆多酚的化学性质及潜在利用价值,本文对豌豆中多酚的分布,影响豌豆多酚种类和含量的因素,豌豆多酚的分离提取、生理活性及其在食品工业中的应用进行了详细阐述,以期为豌豆多酚的开发与研究提供理论依据。Abstract: Pea polyphenols are secondary metabolites widely existing in peas, mainly including flavonoids (populin, kaempferol, quercetin), phenolic acids (p-coumaric acid, erucic acid, ferulic acid) and tannins (catechins). The content, species and distribution of pea polyphenols depend on pea varieties, but they are affected by environment and inducing factors in the process of their growth. The extraction method of pea polyphenols has gradually changed from inefficient solvent extraction to microwave extraction technology with high efficiency and high extraction rate. The research on its physiological activity has gradually developed to the molecular and cellular level, and its application scope has gradually expanded to meat products, aquatic products, flour products and other industries. In order to further understand the chemical properties and potential utilization value of pea polyphenols, this paper expounds in detail the distribution of pea polyphenols, the factors affecting the types and content of pea polyphenols, the separation and extraction, physiological activity and its application in food industry, in order to provide a theoretical basis for the development and research of pea polyphenols.
-
Key words:
- pea /
- polyphenols /
- extraction /
- type /
- identification /
- physiological activity /
- bacteriostasis /
- antioxidant
-
图 1 植物多酚合成代谢途径
Figure 1. Synthetic and metabolic pathways of plant polyphenols
注:PAL:苯丙氨酸解氨酶(phenylalanine ammonia-lyase);C4H:肉桂酸羟化酶(cinnamic acid-4-hydroxylase);4CL:香豆酰-CoA连接酶(4-coumarate-CoA ligase);CHS:查尔酮合酶(chalcone synthase);SbCLL-7:肉桂酰CoA连接酶(cinnamoyl-CoA ligase-7);SbCHS-2:松属素查尔酮合成酶(chalcone synthase-2);SbCHI:查尔酮异构酶(chalcone isomerase);SbFNSⅡ-2:Ⅱ型黄酮合成酶(flavone synthase II gene-2);C3H:对香豆酸-3-羟化酶(coumarate 3-hydroxylase);COMT:咖啡酸氧甲基转移酶(caffeic acid O-methyltransferase);F5H:阿魏酸-5-羟化酶(ferulic acid 5-hydroxylase);CCR:肉桂酰CoA还原酶(cinnamoyl-CoA reductas);CAD:肉桂醇脱氢酶(cinnamoyl alcohol dehydrogenas);CHI: 查尔酮异构酶(chalcone isomerase)F3H:黄烷酮-3-羟基化酶(flavanone-3-hydroxylase);F3ʹH:黄烷酮-3’-羟基化酶(flavanone-3'-hydroxylase);FLS:黄酮醇合成酶(flavonol synthase);DFR:黄酮醇-4-还原酶(dihydroflavonol 4-reductase);LAR:无色花青素还原酶(leucoanthocyanidin reductase);ANS:花青素合成酶(anthocyanidin synthase);ANR:花青素还原酶(anthocyanidin reductase)。
表 1 豌豆中常见酚类物质的化学结构
Table 1. Chemical structures of common phenols in peas
类别 名称 含量 化学结构 黄酮类化合物 白杨素[19]
chrysin57.60~65.90 山奈酚[17]
kaempferol
40.00~80.00槲皮素[17]
quercetin
440.00~690.00酚酸类化合物 对香豆酸[6]
p-Hydroxycinnamic acid870.02±12.51 芥子酸[6]
sinapic acid762.09±10.14 阿魏酸[6]
ferulic acid3141.61±253.26 单宁类化合物 儿茶素[20]
catechin102.30±5.46 注:白杨素含量以鲜重(µg/100 g)计;原花青素以鲜重(mg/100 g)计;对香豆酸、芥子酸和阿魏酸以(mg/100 g)多酚提取物计;其它物质含量均以干质量(mg/100 g)计。 表 2 不同产地豌豆多酚的鉴定
Table 2. Identification of pea polyphenols from different producing areas
产地及品种 原料 鉴定方法 多酚组成和含量 主要结论 福建省漳州市 20种豌豆尖 HPLC 生长中期:槲皮素7.55~12.73(mg/g)、山奈酚0.53~4.35(mg/g)
生长后期:槲皮素3.70~10.92(mg/g)、山奈酚0.80~2.65(mg/g)构建了豌豆尖中槲皮素和山奈酚定性定量的HPLC双波长法;豌豆尖槲皮素和山奈酚含量受品种和生长时期的影响[4] 福建省龙岩市 豌豆籽粒 HPLC 共10种;单体酚含量(µg/100 mg):4-羟基苯甲酸(130.84)、3-(3,4-二羟基苯基)丙酸(487.39)、香草酸(281.14)、绿原酸(290.52)、咖啡酸(397.44)、丁香酸(59.58)、2-羟基苯乙酸(621.93)、对香豆酸(870.02)、阿魏酸(3141.61)、芥子酸(762.09) 构建了豌豆籽粒中10种多酚的HPLC方法[6] 克罗地亚(MBK88、MBK90、MBK168和MBK173) 4种豌豆种皮 UHPLC-LTQ OrbiTrap MS 共41种;总酚含量(不同品种mg/g):MBK88(14.35±0.66)、MBK90(2.57±0.12)、MBK168(30.56±1.30)、MBK173(21.56±0.96)
;单体酚含量(mg/kg):原儿茶酸(26.30~127.20)、表没食子儿茶素(239.30~325.30)、没食子儿茶素(62.30~99.10)构建了豌豆籽粒中41种多酚的UHPLC-LTQ OrbiTrap MS方法;豌豆种皮多酚含量受品种影响[10] 挪威(Aslag)、法国(Assas)、捷克共和国(Dora)、德国(Golf、Poneka)、匈牙利(T Euro Orsz)、克罗地亚(MBK88、MBK90、MBK168和MBK173) 10种不同颜色的豌豆种皮 UHPLC-LTQ OrbiTrap MS 总酚含量(不同品种mg/g):Aslaug(46.56±1.05)、Assas(41.80±0.20)、Dora(34.15±0.78)、Golf(23.13±0.97)、Poneka(39.02±0.72)、Törsz(18.84±0.31)、MBK88(15.94±0.78)、MBK90(2.78±0.53)、MBK168(45.75±2.09)、MBK173(36.64±1.11) 构建了豌豆籽粒中多酚的LTQ OrbiTrap MS定性定量方法;豌豆种皮多酚含量受品种和产区影响[11] 加拿大萨斯喀彻温大学作物发展中心鹰嘴豆、蚕豆、扁豆、豌豆和菜豆 5种豆科植物种皮 LC-MS 共98种;单体酚含量(µg/g):山奈酚:基因型鹰嘴豆(30.33~89.21)、蚕豆(2.41~3.96)、扁豆(198.99~414.43)、豌豆(0.94~3.85)、菜豆(0.73~4071.40)、槲皮素:基因型鹰嘴豆(3.34~179.29)、蚕豆(3.43~5.36)、扁豆(0.17~7.23)、豌豆(0.29~9.87)、菜豆(4.01~225.71)、3,4-二羟基苯甲酸:基因型鹰嘴豆(0.32~0.59)、蚕豆(0.92~4.44)、扁豆(0.70~2.48)、豌豆(2.76~81.70)、菜豆(0.11~1.02)、香草酸-4-β-D-葡萄糖苷:基因型鹰嘴豆(1.58~4.44)、蚕豆(1.61~8.00)、扁豆(20.9~194.00)、豌豆(2.97~43.80)、菜豆(1.22~63.20) 构建了豆科植物种皮中98种多酚的LC-MS定性定量方法;豆科植物种皮多酚含量受基因型和产区影响[13] 德国霍尔茨豌豆冬季品种(James)豌豆夏季品种(Gregor、Navarro、Salamanca、Starter) 5种豌豆叶 HPLC-DAD-ESI-MS 单体酚含量(mg/g):槲皮素:James(4.09)、Gregor(7.06)、Navarro(6.02)、Salamanca(6.16)、Starter(5.44);山奈酚:James(0.93)、Gregor(1.11)、Navarro(1.88)、Salamanca(0.55)、Starter(1.28) 构建了豌豆叶片中多酚的HPLC-DAD-ESI-MS
定性定量方法;豌豆叶多酚含量受品种影响[17]注:鹰嘴豆(Cicer arietinum L.);蚕豆(Vicia faba L.);扁豆(Lens culinaris Medik.);豌豆(Pisum sativum L.);菜豆(Phaseolus vulgaris L.);高效液相色谱(high performance liquid chromatography,HPLC);超高效液相色谱-线性离子阱-静电场轨道阱组合式高分辨质谱(ultra performance liquid chromatography linear trap quadrupole orbitrap mass spectrometry,UHPLC-LTQ OrbiTrap MS);半定量液相色谱质谱法(liquid chromatograph mass spectrometry,LC-MS);高效液相色谱-二极管阵列检测器-电喷雾质谱(high performance liquid chromatography diode array detector electron spray ionization mass spectrometry,HPLC-DAD-ESI-MS)。 表 3 豌豆中不同部位的提取溶剂、酚类物质含量以及抗氧化能力
Table 3. Extraction solvent, phenolic content and antioxidant capacity of different parts of pea
提取部位 最佳溶剂 酚类物质 含量(mg/g) 抗氧化方法 抗氧化能力(µmol/g) 黄豌豆籽粒[8] 丙酮/水(50:50,v/v) 总酚
总黄酮
缩合单宁0.94
0.13
0.39DPPH
FRAP
ORAC1.95
7.10
8.35绿豌豆籽粒[8] 丙酮/水(50:50,v/v) 总酚
总黄酮
缩合单宁0.81
0.12
0.42DPPH
FRAP
ORAC1.53
6.40
5.90豌豆籽粒[9] 丙酮/水/乙酸(70:29.5:0.5,v/v/v) 总酚
总黄酮0.27~1.95
0.53~5.08ABTS
FRAP3.04~22.27
1.24~18.87×103豌豆种皮[10] 甲醇/水/乙酸(80:19:1,v/v/v) 总酚 2.57~30.56 DPPH 0.72~2.55×103 豌豆种皮[11] 甲醇/水/乙酸(80:19:1,v/v/v) 总酚 2.78~46.56 DPPH 0.54~8.04×103 豌豆壳[15] 乙醇/水(80:20,v/v) 总酚 2.60 ORAC 23.06 黄豌豆籽粒[37] 丙酮/水(80:20,v/v) 总酚
总黄酮
缩合单宁1.34±0.02
0.32±0.02
1.52±0.04DPPH
FRAP
ORAC1.80±0.05
14.70±0.80
15.07±0.21绿豌豆籽粒[37] 丙酮/水(80:20,v/v) 总酚
总黄酮
缩合单宁1.07±0.01
0.39±0.02
1.71±0.04DPPH
FRAP
ORAC1.28±0.05
10.80±0.30
13.85±0.81豌豆籽粒[38] 甲醇/水(80:20,v/v) 总酚
单宁19.42
10.85ABTS 2547.90 黄豌豆籽粒[42] 乙醇/水(80:20,v/v) 总酚 2.50 ABTS 3.40 绿豌豆籽粒[42] 乙醇/水(80:20,v/v) 总酚 1.20 ABTS 1.80 豌豆籽粒[43] 甲醇/水(80:20,v/v) 总黄酮 1.35 TEAC
DPPH156.20
108.90注:物质含量均以干质量(mg/g)计;物质抗氧化能力以(µmol/g)计;1,1-二苯基-2-三硝基苯肼(2,2-diphenyl-1-picrylhydrazyl,DPPH);2,2’-联氮-双-3-乙基苯并噻唑啉-6-磺酸(2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid),ABTS);氧自由基吸收能力(oxygen radical absorbance capacity,ORAC);铁离子还原能力(ferricion reducing antioxidant power,FRAP);奎诺二甲基丙烯酸酯等效抗氧化力(trolox equivalent antioxidant capacity,TEAC)。 -
[1] DURAZZO A, LUCARINI M, SOUTO E B, et al. Polyphenols: A concise overview on the chemistry, occurrence, and human health[J]. Phytotherapy Research,2019,33(9):2221−2243. doi: 10.1002/ptr.6419 [2] 孙冬阳, 呼鑫荣, 薛文通. 豌豆功效成分及其生理活性的研究进展[J]. 食品工业科技,2019,40(2):316−320. [SUN D Y, HU X R, XUE W T. Research progress of efficacy components and physiological activity of pea[J]. Science and Technology of Food Industry,2019,40(2):316−320. doi: 10.13386/j.issn1002-0306.2019.02.055 [3] FAHIM J R, ATTIA E Z, KAMEL M S. The phenolic profile of pea (Pisum sativum): A phytochemical and pharmacological overview[J]. Phytochemistry Reviews,2019,18(1):173−198. doi: 10.1007/s11101-018-9586-9 [4] SINGH B, SINGH J P, KAUR A, et al. Phenolic composition and antioxidant potential of grain legume seeds: A review[J]. Food Research International,2017,101:1−16. doi: 10.1016/j.foodres.2017.09.026 [5] 曹晓华, 沈旭斌, 程先骄, 等. HPLC双波长法测定豌豆尖中槲皮素和山奈酚的含量[J]. 食品科技,2017,42(4):270−276. [CAO X H, SHEN X B, CHENG X J, et al. Determination of quercetin and kaempferol in pea shoots by dual wave-length HPLC[J]. Food Science and Technology,2017,42(4):270−276. doi: 10.13684/j.cnki.spkj.2017.04.052 [6] WANG Q, DU Z, ZHANG H, et al. Modulation of gut microbiota by polyphenols from adlay (Coix lacryma-jobi L. var. ma-yuen Stapf.) in rats fed a high-cholesterol diet[J]. International Journal of Food Sciences and Nutrition,2015,66(7):783−789. doi: 10.3109/09637486.2015.1088941 [7] MENDEZ J, LOJO M I. Phenolic and indole constituents of edible peas[J]. Journal of Food Science,1971,36(6):871−872. doi: 10.1111/j.1365-2621.1971.tb15548.x [8] XU B J, YUAN S H, CHANG S K C. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes[J]. Journal of Food Science,2007,72(2):167−177. doi: 10.1111/j.1750-3841.2006.00261.x [9] ZHAO T Y, SU W J, QIN Y, et al. Phenotypic diversity of pea (Pisum sativum L.) varieties and the polyphenols, flavonoids, and antioxidant activity of their seeds[J]. Ciência Rural,2020,50(5):1−16. [10] STANISAVLJEVIĆ N S, ILIĆ M D, JOVANOVIĆ Ž S, et al. Identification of seed coat phenolic compounds from differently colored pea varieties and characterization of their antioxidant activity[J]. Archives of Biological Sciences,2015,67(3):829−840. doi: 10.2298/ABS141204042S [11] STANISAVLJEVIĆ N S, ILIĆ M D, MATIĆ I Z, et al. Identification of phenolic compounds from seed coats of differently colored European varieties of pea (Pisum sativum L.) and characterization of their antioxidant andin vitro anticancer activities[J]. Nutrition and Cancer,2016,68(6):988−1000. doi: 10.1080/01635581.2016.1190019 [12] TROSZYNSKA A, CISKA E. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity[J]. Czech Journal of Food Sciences,2002,20(1):15−22. [13] ELESSAWY F M, BAZGHALEH N, VANDENBERG A, et al. Polyphenol profile comparisons of seed coats of five pulse crops using a semi-quantitative liquid chromatography-mass spectrometric method[J]. Phytochemical Analysis,2020,31(4):458−471. doi: 10.1002/pca.2909 [14] HRAZDINA G, MARX G A, HOCH H C. Distribution of secondary plant metabolites and their biosynthetic enzymes in pea (Pisum sativum L.) leaves: Anthocyanins and flavonol glycosides[J]. Plant Physiology,1982,70(3):745−748. doi: 10.1104/pp.70.3.745 [15] OOMAH B D, CASPAR F, MALCOLMSON L J, et al. Phenolics and antioxidant activity of lentil and pea hulls[J]. Food Research International,2011,44(1):436−441. doi: 10.1016/j.foodres.2010.09.027 [16] NIKOLOPOULOU D, GRIGORAKIS K, STASINI M, et al. Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year[J]. Food Chemistry,2007,103(3):847−852. doi: 10.1016/j.foodchem.2006.09.035 [17] NEUGART S, ROHN S, SCHREINER M. Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile[J]. Food Research International,2015,76:114−121. doi: 10.1016/j.foodres.2015.02.021 [18] DUEÑAS M, ESTRELLA I, HERNÁNDEZ T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.)[J]. European Food Research and Technology,2004,219(2):116−123. [19] KALOGEROPOULOS N, CHIOU A, IOANNOU M, et al. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries[J]. Food Chemistry,2010,121(3):682−690. doi: 10.1016/j.foodchem.2010.01.005 [20] DUAN C X, ZHU Z D, REN G X, et al. Resistance of faba bean and pea germplasm to callosobruchus chinensis (coleoptera: Bruchidae) and its relationship with quality components[J]. Journal of Economic Entomology,2014,107(5):1992−1999. doi: 10.1603/EC14113 [21] VOGT T. Phenylpropanoid biosynthesis[J]. Molecular Plant,2010,3(1):2−20. doi: 10.1093/mp/ssp106 [22] 赵天瑶, 苌淑敏, 李少华, 等. 豌豆萌发过程中生长特性、酚类含量及抗氧化性变化[J]. 中国农业大学学报,2019,24(12):1−9. [ZHAO T Y, CHANG S M, LI S H, et al. Dynamic changes in the greenth characteristics, phenolic content and antioxidant activity of pea during germination[J]. Journal of China Agricultural University,2019,24(12):1−9. doi: 10.11841/j.issn.1007-4333.2019.12.01 [23] XU M, JIN Z, OHM J B, et al. Effect of germination time on antioxidative activity and composition of yellow pea soluble free and polar soluble bound phenolic compounds[J]. Food & Function,2019,10(10):6840−6850. [24] CHOUDHARY K K, AGRAWAL S B. Ultraviolet-B induced changes in morphological, physiological and biochemical parameters of two cultivars of pea (Pisum sativum L.)[J]. Ecotoxicology and Environmental Safety,2014,100:178−187. doi: 10.1016/j.ecoenv.2013.10.032 [25] SIIPOLA S M, KOTILAINEN T, SIPARI N, et al. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation[J]. Plant, Cell & Environment,2015,38(5):941−952. [26] WU M C, HOU C Y, JIANG C M, et al. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings[J]. Food Chemistry,2007,101(4):1753−1758. doi: 10.1016/j.foodchem.2006.02.010 [27] LIU H K, CHEN Y Y, HU T T, et al. The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts[J]. Journal of Functional Foods,2016,25:459−465. doi: 10.1016/j.jff.2016.06.028 [28] KAUR D, GREWAL S K, KAUR J, et al. Free radical scavenging activities can mitigate the effect of water stress in chickpea[J]. Crop & Pasture Science,2017,68(6):544−554. [29] OBEROI H K, GUPTA A K, KAUR S, et al. Stage specific upregulation of antioxidant defence system in leaves for regulating drought tolerance in chickpea[J]. Journal of Applied and Natural Science,2014,6(2):326−337. doi: 10.31018/jans.v6i2.423 [30] JUZOŃ K, SKRZYPEK E, CZYCZŁO MYSZA I, et al. Effect of soil drought on the yield structure, protein and phenolics content in Pisum sativum and Lupinus luteus[J]. Acta Agronomica Hungarica,2013,61(4):267−278. doi: 10.1556/AAgr.61.2013.4.3 [31] 伊风艳, 孙海莲, 晔薷罕, 等. 温度和干旱胁迫对乌拉特肋脉野豌豆种子萌发的影响[J]. 内蒙古农业大学学报(自然科学版),2019,40(5):43−49. [YI F Y, SUN H L, YE R H, et al. Effects of temperature and drought stress on seed germination of Vicia costata ledeb. cv. wulate[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2019,40(5):43−49. doi: 10.16853/j.cnki.1009-3575.2019.05.008 [32] KUMARI, VERMA, SC, et al. Impact of elevated CO2 and temperature on quality and biochemical parameters of pea (Pisum sativum)[J]. Indian J Agr Sci,2016,8(4):1941−1946. [33] RUDIKOVSKAYA E G, FEDOROVA G A, DUDAREVA L V, et al. Effect of growth temperature on the composition of phenols in pea roots[J]. Russian Journal of Plant Physiology,2008,55(5):712−715. doi: 10.1134/S1021443708050178 [34] 包敖民. NO在机械伤害诱导豌豆芽苗防御反应形成信号通道中的作用[D]. 呼和浩特: 内蒙古农业大学, 2015: 11−27.BAO A M. Role of NO in signal pathway of defense response induced by mechanical wounding in pea seedlings[D]. Hohhot: Inner Mongolia Agricultural University, 2015: 11−27. [35] 刘海燕. 不同浓度的微量元素对豌豆芽苗菜的生长和营养品质的影响[D]. 合肥: 安徽农业大学, 2015: 12−28.LIU H Y. Effects of different concentrations of trace elements on growth and quality of pea sprouts[D]. Hefei: Anhui Agricultural University, 2015: 12−28. [36] JAIN A, SINGH A, CHAUDHARY A, et al. Modulation of nutritional and antioxidant potential of seeds and pericarp of pea pods treated with microbial consortium[J]. Food Research International,2014,64:275−282. doi: 10.1016/j.foodres.2014.06.033 [37] XU B J, CHANG S. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents[J]. Journal of Food Science,2010,72(2):159−166. [38] NITHIYANANTHAM S, SELVAKUMAR S, SIDDHURAJU P. Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed legumes, Cicer arietinum L. and Pisum sativum L.[J]. Journal of Food Composition and Analysis,2012,27(1):52−60. doi: 10.1016/j.jfca.2012.04.003 [39] RYBIŃSKI W, KARAMAĆ M, SULEWSKA K, et al. Antioxidant potential of grass pea seeds from European countries[J]. Foods,2018,7(9):142. doi: 10.3390/foods7090142 [40] LÓPEZ-MIRANDA S, SERRANO-MARTÍNEZ A, HERNÁNDEZ-SÁNCHEZ P, et al. Use of cyclodextrins to recover catechin and epicatechin from red grape pomace[J]. Food Chemistry,2016,203:379−385. doi: 10.1016/j.foodchem.2016.02.100 [41] KHODDAMI A, WILKES M, ROBERTS T. Techniques for analysis of plant phenolic compounds[J]. Molecules,2013,18(2):2328−2375. doi: 10.3390/molecules18022328 [42] HAN H, BYUNGKGEE BAIK. Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing[J]. International Journal of Food Science & Technology,2010,43(11):1971−1978. [43] AGBOOLA S O, MOFOLASAYO O A, WATTS B M, et al. Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols[J]. Food Research International,2010,43(2):582−588. doi: 10.1016/j.foodres.2009.07.013 [44] RUNGRUANGMAITREE R, JIRAUNGKOORSKUL W. Pea, Pisum sativum, and its anticancer activity[J]. Pharmacognosy Reviews,2017,11(21):39−42. doi: 10.4103/phrev.phrev_57_16 [45] SASSI A, BZÉOUICH I M, MUSTAPHA N, et al. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response[J]. European Journal of Pharmacology,2017,812(5):91−96. [46] LÍNZEMBOLD I, CZETT D, BÖDDI K, et al. Study on the synthesis, antioxidant properties, and self-assembly of carotenoid-flavonoid conjugates[J]. Molecules,2020,25(3):636. doi: 10.3390/molecules25030636 [47] RAVISHANKAR D, SALAMAH M, ATTINA A, et al. Ruthenium-conjugated chrysin analogues modulate platelet activity, thrombus formation and haemostasis with enhanced efficacy[J]. Scientific Reports,2017,7(1):1−16. [48] WU W, YANG B, QIAO Y, et al. Kaempferol protects mitochondria and alleviates damages against endotheliotoxicity induced by doxorubicin[J]. Biomedicine & Pharmacotherapy,2020,126:3843−3851. [49] CHO H J, PARK J H Y. Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells[J]. Journal of Cancer Prevention,2013,18(3):257−263. doi: 10.15430/JCP.2013.18.3.257 [50] CHAVES W F, PINHEIRO I L, LUANA OLEGÁRIO DA SILVA, et al. Neonatal administration of kaempferol does not alter satiety but increases somatic growth and reduces adiposity in offspring of high-fat diet dams[J]. Life Sciences,2020,259(15):118224. [51] BALLMANN C, DENNEY T S, BEYERS R J, et al. Lifelong quercetin enrichment and cardioprotection in Mdx/Utrn+/-ice[J]. Am J Physiol Heart Circ Physiol,2017,312(1):128−140. doi: 10.1152/ajpheart.00552.2016 [52] HOUGHTON M J, KERIMI A, TUMOVA S, et al. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells[J]. Free Radical Biology and Medicine,2018,129:296−309. doi: 10.1016/j.freeradbiomed.2018.09.037 [53] DOBRIKOVA A G, APOSTOLOVA E L. Damage and protection of the photosynthetic apparatus from UV-B radiation. II. Effect of quercetin at different pH[J]. Journal of Plant Physiology,2015,184(20):98−105. [54] OJHA D, PATIL K N. p-Coumaric acid inhibits the listeria monocytogenes RecA protein functions and SOS response: An antimicrobial target[J]. Biochemical and Biophysical Research Communications,2019,517(4):655−661. doi: 10.1016/j.bbrc.2019.07.093 [55] HUANG X, YOU Y, XI Y, et al. p-Coumaric acid attenuates IL-1β-induced inflammatory responses and cellular senescence in rat chondrocytes[J]. Inflammation,2019,43(2):619−628. [56] SABITHA R, NISHI K, GUNASEKARAN V P, et al. p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models[J]. Chemico-Biological Interactions,2020,321:109044. doi: 10.1016/j.cbi.2020.109044 [57] CHERNG Y G, TSAI C C, CHUNG H H, et al. Antihyperglycemic action of sinapic acid in diabetic rats[J]. Journal of Agricultural and Food Chemistry,2013,61(49):12053−12059. doi: 10.1021/jf403092b [58] BAE I S, KIM S H. Sinapic acid promotes browning of 3T3-L1 adipocytes via p38 MAPK/CREB pathway[J]. Biomed Research International,2020,2020(4):1−8. [59] SILAMBARASAN T, MANIVANNAN J, RAJA B, et al. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in L-NAME hypertensive rats by sinapic acid—Role of HMG-CoA reductase[J]. European Journal of Pharmacology,2016,777(15):113−123. [60] SINGH B, SINGH J P, SHEVKANI K, et al. Bioactive constituents in pulses and their health benefits[J]. Journal of Food Science and Technology,2017,54(4):858−870. doi: 10.1007/s13197-016-2391-9 [61] PARK H J, CHO J H, HONG S H, et al. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells[J]. Journal of Natural Medicines,2018,72(1):127−135. doi: 10.1007/s11418-017-1120-7 [62] JUNG J S, YAN J J, LI H M, et al. Protective effects of a dimeric derivative of ferulic acid in animal models of Alzheimer's disease[J]. European Journal of Pharmacology,2016,782(5):30−34. [63] SMÝKAL P, VERNOUD V, BLAIR M W, et al. The role of the testa during development and in establishment of dormancy of the legume seed[J]. Frontiers in Plant Science,2014,5(351):75678. [64] CESAR P H S, TRENTO M V C, KONIG I F M, et al. Catechin and epicatechin as an adjuvant in the therapy of hemostasis disorders induced by snake venoms[J]. Journal of Biochemical and Molecular Toxicology,2020,34(12):1−9. [65] MILENKOVIC D, DECLERCK K, GUTTMAN Y, et al. (-)-Epicatechins promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation[J]. Biochemical Pharmacology,2019,173:1−16. doi: 10.1016/j.jpba.2019.05.002 [66] TAKANASHI K, SUDA M, MATSUMOTO K, et al. Epicatechin oligomers longer than trimers have anti-cancer activities, but not the catechin counterparts[J]. Scientific Reports,2017,7(1):7791. [67] DONG J, ZHOU Y, LU Y, et al. Effect of tea polyphenols on the oxidation and color stability of porcine hemoglobin[J]. Journal of Food Science,2019,84(8):2086−2090. doi: 10.1111/1750-3841.14703 [68] JIA S, HUANG Z, LEI Y, et al. Application of Illumina-MiSeq high throughput sequencing and culture-dependent techniques for the identification of microbiota of silver carp (Hypophthalmichthys molitrix) treated by tea polyphenols[J]. Food Microbiology,2018,76:52−61. doi: 10.1016/j.fm.2018.04.010 [69] NIE X, WANG L, WANG Q, et al. Effect of a sodium alginate coating infused with tea polyphenols on the quality of fresh japanese sea bass (Lateolabrax japonicas) fillets[J]. Journal of Food Science,2018,83(6):1695−1700. doi: 10.1111/1750-3841.14184 [70] TURCO I, BACCHETTI T, MORRESI C, et al. Polyphenols and the glycaemic index of legume pasta[J]. Food & Function,2019,10(9):5931−5938. [71] 王伟伟, 陈琳, 张建勇, 等. 茶多酚的特性及其在食品中的应用[J]. 中国茶叶,2020,42(11):1−7. [WANG W W, CHEN L, ZHANG J Y, et al. Characteristics of tea polyphenols and its application in food[J]. China Tea,2020,42(11):1−7. doi: 10.3969/j.issn.1000-3150.2020.11.001 [72] MUNIANDY P, SHORI A B, BABA A S. Comparison of the effect of green, white and black tea on Streptococcus thermophilus andLactobacillus spp. in yogurt during refrigerated storage[J]. Journal of the Association of Arab Universities for Basic and Applied Sciences,2015,9(4):240−250. [73] 刘开华, 邢淑婕. 含茶多酚的壳聚糖涂膜对青椒的保鲜效果研究[J]. 中国食品添加剂,2013(2):224−228. [LIU K H, XING S J. Study of tea polyphenol incorporated chitosan coating on green pepper preservation[J]. China Food Additives,2013(2):224−228. doi: 10.3969/j.issn.1006-2513.2013.02.029 [74] 张宇航, 王荣荣, 邢淑婕. 茶多酚在果蔬贮藏保鲜中的应用研究进展[J]. 食品研究与开发,2016,37(11):210−214. [ZHANG Y H, WANG R R, XING S J. Research progress on application of tea polyphenol in storage and preservation of fresh fruits and vegetable[J]. Food Research and Development,2016,37(11):210−214. doi: 10.3969/j.issn.1005-6521.2016.11.050 [75] 丁培峰. 纳他霉素和茶多酚在酱油中的应用研究[J]. 中国调味品,2011,36(5):21−24. [DING P F. Applied research of natamycin and tea polyphenols of soy sauce[J]. China Condiment,2011,36(5):21−24. doi: 10.3969/j.issn.1000-9973.2011.05.007 -