• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

不溶性豆渣纤维对豆渣蛋白乳液特性的影响

王中江 郭亚男 刘双奇 李柏良 张震 刘军 冯镇 郭增旺

王中江,郭亚男,刘双奇,等. 不溶性豆渣纤维对豆渣蛋白乳液特性的影响[J]. 食品工业科技,2023,44(3):40−48. doi:  10.13386/j.issn1002-0306.2021080302
引用本文: 王中江,郭亚男,刘双奇,等. 不溶性豆渣纤维对豆渣蛋白乳液特性的影响[J]. 食品工业科技,2023,44(3):40−48. doi:  10.13386/j.issn1002-0306.2021080302
WANG Zhongjiang, GUO Yanan, LIU Shuangqi, et al. Effect of Insoluble Okara Fiber on the Properties of Okara Protein Emulsion[J]. Science and Technology of Food Industry, 2023, 44(3): 40−48. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021080302
Citation: WANG Zhongjiang, GUO Yanan, LIU Shuangqi, et al. Effect of Insoluble Okara Fiber on the Properties of Okara Protein Emulsion[J]. Science and Technology of Food Industry, 2023, 44(3): 40−48. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021080302

不溶性豆渣纤维对豆渣蛋白乳液特性的影响

doi: 10.13386/j.issn1002-0306.2021080302
基金项目: 黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2018163);青年人才托举工程项目(2019QNRC001);山东省重点研发计划(重大科技创新项目)(2022CXGC010603);黑龙江省“百千万”工程科技重大专项项目(2021ZX12B02);“十四五”国家重点研发计划(2021YFD2100400);黑龙江省重大科技成果转化项目(CG19A002);山东省新旧动能转换重大产业攻关项目。
详细信息
    作者简介:

    王中江(1987−),男,博士,副教授,研究方向:粮食、油脂及植物蛋白工程,E-mail:wzjname@126.com

    通讯作者:

    郭增旺(1992−),男,博士,副教授,研究方向:粮食、油脂及植物蛋白工程,E-mail:gzwname@163.com

  • 中图分类号: TS214.2

Effect of Insoluble Okara Fiber on the Properties of Okara Protein Emulsion

  • 摘要: 本文探究不溶性豆渣纤维(IOF)对豆渣蛋白(SOP)乳液性能的影响。以葵花籽油为油相,研究不同浓度的IOF(0.25 wt%、0.50 wt%、0.75 wt%和1.00 wt%)对SOP乳液微观结构、界面活性、乳化性和稳定性的影响。结果表明:随着IOF浓度的升高,SOP/IOF乳液的粒径呈现逐渐升高的趋势,激光共聚焦表明乳液液滴变化呈现相同趋势,ζ-电位绝对值呈现升高趋势,界面蛋白含量和浓度呈现增大趋势,流变指标的变化表明剪切稀化的趋势在加强,且高浓度的IOF能显著增强SOP乳液的长期储存稳定性、耐酸稳定性及耐盐稳定性,这为IOF在蛋白乳液凝胶体系中的进一步应用提供了理论基础。
  • 图  1  IOF对SOP乳液微观结构的影响

    Figure  1.  The effect of IOF concentration on the microstructure of SOP emulsion

    注:IOF添加量:A:0;B:0.25 wt%;C:0.50 wt%;D:0.75 wt%;E:1.00 wt%。

    图  2  IOF浓度对SOP乳液界面张力的影响

    Figure  2.  The effect of different concentrations of IOF on the interfacial tension of SOP emulsion

    图  3  IOF浓度对SOP/IOF复合乳液的表观粘度的影响

    Figure  3.  The effect of different concentrations of IOF on the apparent viscosity of SOP/IOF composite emulsion

    图  4  IOF浓度对SOP/IOF复合乳液G′的影响

    Figure  4.  The effect of different concentrations of IOF on the storage modulus of SOP/IOF composite emulsion

    图  5  IOF浓度对SOP/IOF复合乳液G′′的影响

    Figure  5.  The effect of different concentrations of IOF on the loss modulus of SOP/IOF composite emulsion

    图  6  IOF浓度对SOP/IOF复合乳液 tanδ的影响

    Figure  6.  The effect of different concentrations of IOF on the loss tangent of SOP/IOF composite emulsion

    图  7  IOF浓度对SOP/IOF复合乳液乳化性的影响

    Figure  7.  The effect of different concentrations of IOF on emulsifying activity of SOP/IOF composite emulsion

    注:不同小写字母表示差异显著(P<0.05)。

    表  1  IOF浓度对SOP乳液粒径和ζ-电位的影响

    Table  1.   The effect of IOF concentration on the particle size and ζ-potential of SOP emulsion

    IOF浓度(wt%)ζ-电位(mV)乳液平均粒径(μm)
    0−35.2±0.3e4.81±0.19e
    0.25−40.2±0.2d6.34±0.21d
    0.50−42.0±0.2c13.98±0.45c
    0.75−43.3±0.3b18.49±0.72b
    1.00−43.9±0.2a26.09±0.82a
    注:同列不同小写字母表示差异显著(P<0.05),表2表3同。
    下载: 导出CSV

    表  2  IOF浓度对SOP乳液界面蛋白含量和浓度的影响

    Table  2.   The effect of IOF concentration on the protein content and concentration of SOP emulsion interface

    IOF浓度(wt%)界面蛋白含量(PA,%)界面蛋白浓度(Γ,mg/m2
    034.211±0.106d0.127±0.002c
    0.2538.153±0.062c0.131±0.003c
    0.5041.785±0.099b0.169±0.003a
    0.7542.062±0.150b0.174±0.004a
    1.0046.566±0.271a0.151±0.009b
    下载: 导出CSV

    表  3  IOF浓度对SOP/IOF复合乳液的流动行为的影响

    Table  3.   The effect of different concentrations of IOF on the flow behavior of SOP/IOF composite emulsion

    IOF浓度
    (wt%)
    初始表观黏度
    (Pa·s)
    稠度指数
    (Pa.sn)
    流动行为指数R2
    03.681±0.940d2.734±0.619c0.9784±0.0163a0.9989
    0.254.033±0.974d2.885±0.794c0.9715±0.0311a0.9996
    0.509.917±1.048c4.967±1.538bc0.8515±0.0702b0.9993
    0.7516.004±1.411b10.154±3.192b0.8374±0.0386b0.9975
    1.0030.405±3.827a37.848±7.166a0.5635±0.0794c0.9967
    下载: 导出CSV

    表  4  IOF浓度对SOP乳液储藏稳定性的影响

    Table  4.   The effect of IOF concentration on the storage stability of SOP emulsion

    IOF浓度
    (wt%)
    乳液平均粒径(μm)
    0 d7 d15 d30 d30-0(%)
    04.81±0.19Ed5.96±0.04Ec8.13±0.04Eb11.49±0.15Ea138.82
    0.256.34±0.21Dd9.51±0.18Dc11.08±0.19Db12.64±0.11Da99.37
    0.5013.98±0.45Cd15.71±0.63Cc18.69±0.52Cb22.09±0.46Ca58.03
    0.7518.49±0.72Bd19.3±0.31Bc21.74±0.44Bb23.38±0.35Ba26.43
    1.0026.09±0.82Ad26.49±0.39Ac26.90±0.06Ab28.58±0.27Aa9.56
    注:同列不同大写字母表示有显著性(P<0.05);同行不同小写字母表示有显著性(P<0.05)。
    下载: 导出CSV

    表  5  不同IOF浓度下pH和盐离子对SOP乳液的ζ-电位和平均粒径的影响

    Table  5.   The effect of pH and salt ions on the ζ-potential and average particle size of SOP emulsion under IOF concentration

    IOF浓度(wt%)乳液电位(mV)乳液平均粒径(μm)
    pH=7pH=5pH=7+
    0.1 mol/L NaCl
    pH=7pH=5pH=7+
    0.1 mol/L NaCl
    0−35.2±0.3eA−23.9±0.3eC−30.7±0.2aB4.81±0.19eE17.62±0.24dD5.02±0.45eE
    0.25−40.2±0.2dA−24.8±0.1dC−29.3±0.6bB6.34±0.21dE21.93±0.13cD6.62±0.53dE
    0.5−42.0±0.2cA−26.0±0.5cD−29.0±0.4bB13.98±0.45cF27.34±0.51bC15.27±0.75cE
    0.75−43.3±0.3bA−27.1±0.1bD−28.5±0.3bC18.49±0.72bF32.84±0.50aB19.84±0.18bE
    1−43.9±0.2aA−28.3±0.4aC−28.9±0.4bC26.09±0.82aD33.28±0.22aB28.41±0.36aC
    注:同行不同大写字母表示有显著性(P<0.05);同列不同小写字母表示有显著性(P<0.05)。
    下载: 导出CSV
  • [1] 孙英杰. 超声波处理对大豆分离蛋白结构和功能性质影响研究[D]. 哈尔滨: 东北农业大学, 2014.

    SUN Y J. Effect of ultrasonic treatment on structure and functional properties of soybean protein isolate[D]. Harbin: Northeast Agricultural University, 2014.
    [2] 徐赏, 华欲飞, 张彩猛. 豆渣蛋白的制备及其性质研究[J]. 中国油脂,2013,38(2):36−39. [XU S, HUA Y F, ZHANG C M. Preparation and properties of soybean residue protein[J]. Chinese Oil,2013,38(2):36−39.
    [3] LI B, QIAO M Y, LU F. Composition, nutrition, and utilization of Okara (soybean residue)[J]. Food Reviews International,2012,28(3):231−252. doi:  10.1080/87559129.2011.595023
    [4] 王鹏, 李贵全. 不同大豆品系农艺与质量性状的灰色关联度分析[J]. 山西农业科学,2012,40(12):1243−1246. [WANG P, LI G Q. Grey correlation analysis of agronomic and quality traits of different soybean lines[J]. Shanxi Agricultural Science,2012,40(12):1243−1246.
    [5] 祝团结, 郑为完. 大豆豆渣的研究开发现状与展望[J]. 食品研究与开发,2004,25(4):25−28,39. [ZHU T J, ZHENG W W. Research and development status and prospect of soybean residue[J]. Food Research and Development,2004,25(4):25−28,39.
    [6] 徐赏. 大豆分离蛋白副产物中豆渣蛋白的组分分析及回收[D]. 无锡: 江南大学, 2013.

    XU S. Component analysis and recovery of soybean residue protein in by-product of soybean protein isolate[D]. Wuxi: Jiangnan University, 2013.
    [7] 李杨, 吴长玲, 马春芳, 等. 低温超微粉碎对豆渣膳食纤维结构及功能特性影响[J]. 食品工业,2019,40(2):160−164. [LI Y, WU C L, MA C F, et al. Effects of low temperature ultrafine comminution on the structure and functional properties of dietary fiber from soybean dregs[J]. Food Industry,2019,40(2):160−164.
    [8] 涂宗财, 段邓乐, 王辉, 等. 豆渣膳食纤维的结构表征及其抗氧化性研究[J]. 中国粮油学报,2015,30(6):22−26. [TU Z C, DUAN D L, WANG H, et al. Study on structure characterization and antioxidant activity of soybean residue dietary fiber[J]. Chinese Journal of Grain and Oil,2015,30(6):22−26.
    [9] 王喜波, 王健, 张泽宇, 等. 物理改性对大豆蛋白柔性与乳化性的影响及其相关性分析[J]. 农业机械学报,2017,48(7):339−344. [WANG X B, WANG J, ZHANG Z Y, et al. Effect of physical modification on flexibility and emulsification of soybean protein and its correlation analysis[J]. Journal of Agricultural Machinery,2017,48(7):339−344.
    [10] MANASSERO C A, DAVID B E, VAUDAGNA S R, et al. Calcium addition, pH, and high hydrostatic pressure effects on soybean protein isolates—Part 1: Colloidal stability improvement[J]. Food & Bioprocess Technology, 2018, 11: 1125–1138
    [11] 郭荣佳. 酶解对大豆蛋白结构功能性影响及高乳化起泡性蛋白制备[D]. 哈尔滨: 东北农业大学, 2014.

    GUO R J. Effect of enzymatic hydrolysis on structure and function of soybean protein and preparation of highly emulsified foaming protein[D]. Harbin: Northeast Agricultural University, 2014.
    [12] 李伟伟. 高乳化性大豆蛋白的制备及其界面流变性质的研究[D]. 无锡: 江南大学, 2017.

    LI W W. Preparation and interfacial rheological properties of highly emulsified soybean protein[D]. Wuxi: Jiangnan University, 2017.
    [13] 邓若璇. 纳米纤维素作为乳化、稳定剂和膳食纤维的应用研究[D]. 无锡: 江南大学, 2017.

    DENG R X. Application of nano cellulose as emulsification, stabilizer and dietary fiber[D]. Wuxi: Jiangnan University, 2017.
    [14] DICKINSON E. Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions[J]. Soft Matter,2008,4(5):932−942. doi:  10.1039/b718319d
    [15] 覃定奎. 膳食纤维对蛋白包裹型乳液油脂消化的影响及其机制[D]. 杨凌: 西北农林科技大学, 2017.

    TAN D K. Effects of dietary fiber on the digestion of protein encapsulated emulsion and its mechanism[D]. Yangling: Northwest A & F University, 2017.
    [16] 陈亚非, 赵谋明. 水溶性与水不溶性膳食纤维对油脂、胆固醇和胆酸钠吸附作用研究[J]. 现代食品科技,2005,21(3):58−60. [CHEN Y F, ZHAO M M. Study on the adsorption of oil, cholesterol and sodium cholate by water-soluble and water-insoluble dietary fiber[J]. Modern Food Technology,2005,21(3):58−60.
    [17] 范宏亮. 微波、超声波提取工艺对大豆种皮多糖乳化性质影响及多糖工厂设计[D]. 锦州: 渤海大学, 2019.

    FAN H L. Effect of microwave and ultrasonic extraction process on emulsifying properties of soybean seed coat polysaccharide and polysaccharide factory design[D]. Jinzhou: Bohai University, 2019.
    [18] CHEN B, CAI Y, LIU T, et al. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments[J]. Food Hydrocolloids,2019,93(8):167−175.
    [19] RODRÍGUEZ S D, VON S M, PILOSOF A M R. Green tea polyphenols-whey proteins nanoparticles: Bulk, interfacial and foaming behavior[J]. Food Hydrocolloids,2015,50:108−115. doi:  10.1016/j.foodhyd.2015.04.015
    [20] LI Y, WU C L, LIU J, et al. Soy protein isolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization[J]. Nanomaterials,2018,8(5):307. doi:  10.3390/nano8050307
    [21] 王喜波, 于洁, 王小丹, 等. 基于美拉德反应的酶改性大豆蛋白冻融稳定性研究[J]. 农业机械学报,2018,49(5):361−367. [WANG X B, YU J, WANG X D, et al. Study on freeze-thaw stability of enzyme modified soybean protein based on Maillard reaction[J]. Journal of Agricultural Machinery,2018,49(5):361−367.
    [22] PUPPO C, BEAUMAL, F. SPERONI, et al. β-Conglycinin and glycinin soybean protein emulsions treated by combined temperature-high-pressure treatment[J]. Food Hydrocolloids,2011,25:389−397. doi:  10.1016/j.foodhyd.2010.07.005
    [23] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry,1951,193(1):265−275. doi:  10.1016/S0021-9258(19)52451-6
    [24] 李良, 张小影, 朱建宇, 等. 大豆-乳清混合蛋白对O/W乳液稳定性及流变性的影响[J]. 农业机械学报,2019,50(12):372−379. [LI L, ZHANG X Y, ZHU J Y, et al. Effect of soybean whey mixed protein on stability and rheological properties of O/W emulsion[J]. Journal of Agricultural Machinery,2019,50(12):372−379.
    [25] 江连洲, 綦玉曼, 马春芳, 等. 鱼油纳米乳液运载体系构建与稳定性研究[J]. 农业机械学报,2018,49(10):394−402. [JIANG L Z, QI Y M, MA C F. Construction and stability of fish oil nano emulsion delivery system[J]. Journal of Agricultural Machinery,2018,49(10):394−402.
    [26] 迟玉杰, 张好凯, 迟媛, 等. 高压均质协同高酰基结冷胶对青椒蛋蔬液流变特性及稳定性的影响[J]. 食品科学,2019,40(9):91−98. [CHI Y J, ZHANG H K, CHI Y, et al. Effects of high pressure homogenization and high acyl gellan gum on rheological properties and stability of green pepper egg and vegetable liquid[J]. Food Science,2019,40(9):91−98.
    [27] 佟臻, 韦阳, 高彦祥. 基于食品级胶体颗粒稳定Pickering乳液的研究进展[J]. 食品工业科技,2019,40(4):317−324. [TONG Z, WEI Y, GAO Y X. Research progress of Pickering emulsion stabilized by food grade colloidal particles[J]. Food Industry Technology,2019,40(4):317−324.
    [28] 周海媚. 大豆纤维改性粒子制备及其Pickering乳液特性研究[D]. 广州: 华南理工大学, 2017.

    ZHOU H M. Preparation of soybean fiber modified particles and properties of Pickering emulsion[D]. Guangzhou: South China University of Technology, 2017.
    [29] 孙领鸽, 王丹丹, 毛晓英, 等. 丙烯醛氧化修饰对核桃蛋白结构和乳化特性的影响[J]. 食品科学,2018,39(20):43−48. [SUN L G, WANG D D, MAO X Y, et al. Influence of oxidative modification with acrolein on structural and emulsifying properties of walnut protein[J]. Food Science,2018,39(20):43−48.
    [30] 李霞. 不同结构纳米纤维素稳定Pickering乳液的作用机制与应用研究[D]. 广州: 华南理工大学, 2019.

    LI X. Study on the mechanism and application of nano emulsion stabilized pickering emulsion with different structures[D]. Guangzhou: South China University of Technology, 2019.
    [31] 向飞, 吴考, 肖满, 等. 魔芋葡甘聚糖基可食膜的成膜机理研究进展[J]. 食品工业科技,2020,41(5):340−347,353. [XIANG F, WU K, XIAO M, et al. Research progress on film forming mechanism of konjac glucomannan based edible film[J]. Food Industry Technology,2020,41(5):340−347,353.
    [32] 金伟平. 魔芋葡甘聚糖/明胶/多酚互作行为及微纳组装机制的研究[D]. 武汉: 华中农业大学, 2016.

    JIN W P. Study on interaction behavior and micro nano assembly mechanism of konjac glucomannan/gelatin/polyphenol[D]. Wuhan: Huazhong Agricultural University, 2016.
    [33] 王金梅. 大豆蛋白热聚集行为及界面、乳化性质研究[D]. 广州: 华南理工大学, 2012.

    WANG J M. Study on thermal aggregation behavior, interfacial and emulsifying properties of soybean protein[D]. Guangzhou: South China University of Technology, 2012.
    [34] LIU L, ZHAO Q, LIU T, et al. Sodium caseinate/carboxymethylcellulose interactions at oil-water interface: Relationship to emulsion stability[J]. Food Chemistry,2012,132(4):1822−1829. doi:  10.1016/j.foodchem.2011.12.014
    [35] 陈先鑫. 不同抗氧化剂对蛋白乳液稳定性及油脂体外消化特性影响的研究[D]. 南昌: 南昌大学, 2016.

    CHEN X X. Effects of different antioxidants on stability of protein emulsions and in vitro digestibility of oils[D]. Nanchang: Nanchang University, 2016.
    [36] 龙肇. 蛋白质—多糖交互作用对高乳脂乳浊液稳定性的影响及作用机理研究[D]. 广州: 华南理工大学, 2014.

    LONG Z. Effect of protein polysaccharide interaction on the stability of high fat emulsion and its mechanism[D]. Guangzhou: South China University of Technology, 2014.
    [37] 金星, 迟涛, 于鑫欣, 等. 热处理乳清蛋白对凝固型酸乳凝胶质量的影响[J]. 食品工业科技,2018,39(16):42−48. [JIN X, CHI T, YU X X, et al. Effect of heat treated whey protein on the quality of solidified yogurt gel[J]. Food Industry Technology,2018,39(16):42−48.
    [38] 李薇, 郑炯, 陈映衡, 等. 超声波处理对豌豆淀粉糊化、流变及质构特性的影响[J]. 食品与机械,2018,34(5):32−37. [LI W, ZHENG J, CHEN Y H, et al. Effects of ultrasonic treatment on gelatinization, rheology and texture properties of pea starch[J]. Food and Machinery,2018,34(5):32−37.
    [39] 宁方建. 花生蛋白富硒特性及其纳米粒子稳定的皮克林乳液研究[D]. 南昌: 南昌大学, 2019.

    NING F J. Selenium enriched characteristics of peanut protein and stable Pickering emulsion of nanoparticles[D]. Nanchang: Nanchang University, 2019.
    [40] 王启明, 唐瑜婉, 杨雅轩, 等. pH值对麦醇溶蛋白-槲皮素相互作用及其Pickering乳液特性的影响[J]. 食品科学,2020,41(20):27−34. [WANG Q M, TANG Y W, YANG Y X, et al. Effects of pH on the interaction between gliadin and quercetin and the properties of Pickering emulsion[J]. Food Science,2020,41(20):27−34.
    [41] PROTONOTARIOU S, EVAGELIOU V, YANNIOTIS S, et al. The influence of different stabilizers and salt addition on the stability of model emulsions containing olive or sesame oil[J]. Journal of Food Engineering,2013,117(1):124−132. doi:  10.1016/j.jfoodeng.2013.01.044
    [42] 汪菁琴. 动态超高压均质对大豆分离蛋白改性的研究[D]. 南昌: 南昌大学, 2007.

    WANG J Q. Study on modification of soybean protein isolate by dynamic ultra-high pressure homogenization[D]. Nanchang: Nanchang University, 2007.
    [43] 卢薇, 黄晓梅, 韦翠兰, 等. 小麦蛋白酶解产物/槲皮素/甜菜果胶复合乳液的构建及表征[J]. 现代食品科技,2019,35(11):193−198. [LU W, HUANG X M, WEI C L, et al. Construction and characterization of wheat protein hydrolysate/quercetin/beet pectin composite emulsion[J]. Modern Food Technology,2019,35(11):193−198.
    [44] 钟明明, 齐宝坤, 赵添, 等. 大豆亲脂蛋白-羟丙基甲基纤维素乳液制备及其稳定性[J]. 食品科学,2019,40(18):41−47. [ZHONG M M, QI B K, ZHAO T, et al. Preparation and stability of soybean lipoprotein hydroxypropyl methyl cellulose emulsion[J]. Food Science,2019,40(18):41−47.
    [45] 陈冬, 张晓阳, 刘尧政, 等. 姜油纳米乳液超声波乳化制备工艺及其稳定性研究[J]. 农业机械学报,2016,47(6):250−258. [CHEN D, ZHANG X Y, LIU Y Z, et al. Study on preparation and stability of ginger oil nano emulsion by ultrasonic emulsification[J]. Journal of Agricultural Machinery,2016,47(6):250−258.
    [46] 赵玲玲, 张红运, 范宏亮, 等. pH, Na+和Ca2+对大豆种皮果胶类多糖乳化稳定性的影响[J]. 中国粮油学报,2019,34(1):30−36. [ZHAO L L, ZHANG H Y, FAN H L, et al. Effects of pH, Na+ and Ca2+ on emulsifying stability of pectin polysaccharides from soybean seed coat[J]. Chinese Journal of Grain and Oil,2019,34(1):30−36.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  22
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 网络出版日期:  2022-12-14
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海