高抗菌性聚乙烯醇/Ag@MOF食品包装膜的制备与表征

张猛 王国慧 张欣 郑裕祺 李少香 王栋 李雁欣 曲文娟

张猛,王国慧,张欣,等. 高抗菌性聚乙烯醇/Ag@MOF食品包装膜的制备与表征[J]. 食品工业科技,2021,42(23):243−250. doi:  10.13386/j.issn1002-0306.2021040039
引用本文: 张猛,王国慧,张欣,等. 高抗菌性聚乙烯醇/Ag@MOF食品包装膜的制备与表征[J]. 食品工业科技,2021,42(23):243−250. doi:  10.13386/j.issn1002-0306.2021040039
ZHANG Meng, WANG Guohui, ZHANG Xin, et al. Fabrication and Characterization of Antibacterial Polyvinyl Alcohol/Ag@MOF Films for Food Packing[J]. Science and Technology of Food Industry, 2021, 42(23): 243−250. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021040039
Citation: ZHANG Meng, WANG Guohui, ZHANG Xin, et al. Fabrication and Characterization of Antibacterial Polyvinyl Alcohol/Ag@MOF Films for Food Packing[J]. Science and Technology of Food Industry, 2021, 42(23): 243−250. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021040039

高抗菌性聚乙烯醇/Ag@MOF食品包装膜的制备与表征

doi: 10.13386/j.issn1002-0306.2021040039
基金项目: 国家自然科学基金(51806113)。
详细信息
    作者简介:

    张猛(1996−),男,硕士研究生,研究方向:食品包装,E-mail:A903962566@163.com

    通讯作者:

    李少香(1964−),女,博士,教授,研究方向:食品包装,E-mail:Leeshaoxiang@126.com

    王栋(1989−),男,博士,研究方向:食品包装,E-mail:wd_charrel@163.com

  • 中图分类号: TS201.1

Fabrication and Characterization of Antibacterial Polyvinyl Alcohol/Ag@MOF Films for Food Packing

  • 摘要: 为分析银基金属有机框架(Ag@MOF)用于食品包装的可行性,采用流延法制备四种不同的聚乙烯醇(PVA)基食品包装膜(PVA/Ag@MOF、PVA/H2PYDC、PVA/Ag、PVA),并研究它们的力学性能、热力学性能、水阻隔性、抗菌性、细胞毒性等。结果表明,与PVA、PVA/H2PYDC膜相比,Ag@MOF的加入改善了薄膜的力学性能,使薄膜最大拉伸强度提高到36.21 MPa。与PVA、PVA/H2PYDC、PVA/AgNPs膜相比,Ag@MOF的加入增强了膜的热稳定性。与PVA、PVA/H2PYDC膜相比,AgNPs和Ag@MOF的刚性结构防止了水的扩散,提高了阻水性能。PVA/Ag@MOF膜对金黄色葡萄球菌和大肠杆菌的抗菌活性也很好,其抗菌活性远大于AgNPs和H2PYDC复合膜,且具有较低的细胞毒性。因此,PVA/Ag@MOF薄膜是一种很有前景的食品包装材料,可以减少环境微生物对食品的干扰且细胞毒性较低,能够有效提高食品的安全性和储存周期。
  • 图  1  Ag@MOF及其复合膜的FT-IR谱图

    Figure  1.  FTIR spectra of Ag@MOF and polymer nanocomposites films

    图  2  Ag@MOF及其复合膜的XRD谱图

    Figure  2.  XRD patterns of Ag@MOF and polymer nanocomposites films

    图  3  Ag@MOF的SEM图像

    Figure  3.  SEM images of Ag@MOF

    图  4  (a)PVA、(b)PVA/H2PYDC、(c)PVA/AgNPs、(d)PVA/0.1%Ag@MOF、(e)PVA/0.5%Ag@MOF和(f)PVA/1.0%Ag@MOF的SEM图像

    Figure  4.  SEM images of (a) PVA, (b) PVA/H2PYDC, (c) PVA/AgNPs, (d) PVA/0.1%Ag@MOF, (e) PVA/0.5%Ag@MOF, and (f) PVA/1.0%Ag@MOF films

    图  5  复合膜的拉伸强度和断裂伸长率

    Figure  5.  Tensile strength and elongation at break of polymer nanocomposites films

    图  6  Ag@MOF纳米颗粒、PVA、PVA/H2PYDC、PVA/AgNPs和PVA/Ag@MOF薄膜的TGA曲线

    Figure  6.  TGA curves of Ag@MOF nanoparticles, PVA, PVA/H2PYDC, PVA/AgNPs, and PVA/Ag@MOF films

    图  7  复合膜的水接触角和水蒸气渗透率

    Figure  7.  Water contact angles and water vapour permeability of polymer nanocomposites films

    图  8  复合膜对大肠杆菌和金黄色葡萄球菌的抑制区

    Figure  8.  Inhibition zones for polymer nanocomposites films against E. coli and S. aureus

    图  9  PVA、PVA/H2PYDC、PVA/AgNPs和PVA/Ag@MOF膜处理小鼠L929成纤维细胞的细胞活性

    Figure  9.  Viability of Mouse L929 fibroblastic cells treated with increasing concentrations of PVA、PVA/H2PYDC、PVA/AgNPs和PVA/Ag@MOF films

  • [1] USMAN A, HUSSAIN Z, RIAZ A, et al. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films[J]. Carbohydrate Polymers,2016,153:592−599. doi:  10.1016/j.carbpol.2016.08.026
    [2] AGUIRRE A, BORNEO R, LEÓN A E. Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil[J]. Food Bioscience,2013,1:2−9.
    [3] AL-HASSAN A A, NORZIAH M H. Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers[J]. Food Hydrocolloids,2012,26(1):108−117. doi:  10.1016/j.foodhyd.2011.04.015
    [4] ARADMEHR A, JAVANBAKHT V. A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: Synthesis and characterization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020:600.
    [5] BAILORE N N , BALLADKA S K, DODDAPANENI S J D S , et al. Fabrication of environmentally compatible biopolymer films of pullulan/piscean collagen/ZnO nanocomposite and their antifungal activity[J]. Journal of Polymers and the Environment,2020,29:1192−1201.
    [6] CHAHAL R P , MAHENDIA S, TOMAR A K , et al. γ-Irradiated PVA/Ag nanocomposite films: Materials for optical applications[J]. Journal of Alloys and Compounds,2012,538:212−219. doi:  10.1016/j.jallcom.2012.05.085
    [7] BRA B, AFI B, MA B, et al. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment[J]. Int J Biol Macromol,2012,149:513−521.
    [8] BONILLA J, POLONI T, LOUREN?O R V, et al. Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films[J]. Food Bioscience,2018,23:107−114. doi:  10.1016/j.fbio.2018.03.007
    [9] P CAZON, M VAZQUEZ, VELAZQUEZ G. Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: Evaluation of water adsorption, mechanical and optical properties[J]. Int J Biol Macromol,2018,117:235−246. doi:  10.1016/j.ijbiomac.2018.05.148
    [10] CHEN Z, ZONG L, CHEN C, et al. Development and characterization of PVA-Starch active films incorporated with β-cyclodextrin inclusion complex embedding lemongrass (Cymbopogon citratus) oil[J]. Food Packaging and Shelf Life,2020:26.
    [11] CHEN J, LI Y, ZHANG Y, et al. Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker[J]. Journal of Applied Polymer Science,2015,132(22):n/a−n/a.
    [12] MC A , DLP B , GQ B , et al. One-step eco-friendly synthesized silver-graphene oxide/poly(vinyl alcohol) antibacterial nanocomposites[J]. Carbon,2020,150:101−116.
    [13] DAVE H K, NATH K. Graphene oxide incorporated novel polyvinyl alcohol composite membrane for pervaporative recovery of acetic acid from vinegar wastewater[J]. Journal of Water Process Engineering,2016,14:124−134. doi:  10.1016/j.jwpe.2016.11.002
    [14] D DOMENE-LOPEZ, M M GUILLEN, I MARTIN-GULLON, et al. Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends[J]. Carbohydr Polym,2018,202:299−305. doi:  10.1016/j.carbpol.2018.08.137
    [15] HE H, CAI R, WANG Y, et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application[J]. Int J Biol Macromol,2017,104(PtA):457−464.
    [16] KOCHKINA N E , LUKIN N D. Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions[J]. Int J Biol Macromol,2020,157:377−384. doi:  10.1016/j.ijbiomac.2020.04.154
    [17] TRAVLOU N A, ALGARRA M , ALCOHOLADO C, et al. Carbon quantum dot surface-chemistry-dependent ag release governs the high antibacterial activity of Ag-metal-organic framework composites[J]. ACS Applied Bio Materials,2028,1(3):693−707.
    [18] BHARDWAJ N, BHARDWAJ S K, MEHTA J, et al. MOF-bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus[J]. ACS Appl Mater Interfaces,2017,9(39):33589−33598. doi:  10.1021/acsami.7b07818
    [19] BAREA E, MONTORO C, NAVARRO J A. Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours[J]. Chem Soc Rev,2014,43(16):5419−5430. doi:  10.1039/C3CS60475F
    [20] ABÁNADES LÁZARO I, FORGAN R S. Application of zirconium MOFs in drug delivery and biomedicine[J]. Coordination Chemistry Reviews,2019,380:230−259. doi:  10.1016/j.ccr.2018.09.009
    [21] GUAN Q L , HAN C , BAI F Y, et al. Bismuth-MOF based on tetraphenylethylene derivative as a luminescent sensor with turn-off/on for application of Fe3+ detection in serum and bioimaging, as well as emissive spectra analysis by TRES[J]. Sensors and Actuators B:Chemical,2020:325.
    [22] LEE S, ZHANG M, WANG W, et al. Characterization of polyvinyl alcohol/starch composite films incorporated with p-coumaric acid modified chitosan and chitosan nanoparticles: A comparative study[J]. Carbohydr Polym,2021,26:117930.
    [23] JU S, ZHANG F, DUAN J, et al. Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study[J]. Carbohydr Polym,2020,237:116167. doi:  10.1016/j.carbpol.2020.116167
    [24] ZHANG M, WANG G, WANG D, et al. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications[J]. Int J Biol Macromol,2021,175:481−494. doi:  10.1016/j.ijbiomac.2021.02.045
    [25] LU X, YE J, ZHANG D, et al. Ning, Silver carboxylate metal-organic frameworks with highly antibacterial activity and biocompatibility[J]. J Inorg Biochem,2014,138:114−121. doi:  10.1016/j.jinorgbio.2014.05.005
    [26] JO Y, GARCIA C V , KO S, et al. Characterization and antibacterial properties of nanosilver-applied polyethylene and polypropylene composite films for food packaging applications[J]. Food Bioscience,2018,23:83−90. doi:  10.1016/j.fbio.2018.03.008
    [27] LU Z, GAO J, HE Q, et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing[J]. Carbohydr Polym,2017,156:460−469. doi:  10.1016/j.carbpol.2016.09.051
    [28] RIAZ A, LAGNIKA C, LUO H, et al. Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films[J]. Carbohydr Polym,2020,235:115944. doi:  10.1016/j.carbpol.2020.115944
    [29] LIU J, LIU S, CHEN Y, et al. Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids[J]. Food Hydrocolloids,2017,71:176−186. doi:  10.1016/j.foodhyd.2017.05.019
    [30] KANATT S R. Irradiation as a tool for modifying tapioca starch and development of an active food packaging film with irradiated starch[J]. Radiation Physics and Chemistry,2020:173.
    [31] WU Y, LUO X, LI W, et al. Green and biodegradable composite films with novel antimicrobial performance based on cellulose[J]. Food Chem,2016,197:250−256. doi:  10.1016/j.foodchem.2015.10.127
    [32] SARWAR M S, NIAZI M B K, JAHAN Z, et al. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging[J]. Carbohydr Polym,2018,184:453−464. doi:  10.1016/j.carbpol.2017.12.068
  • 加载中
图(9)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升