熵权法结合Box-Behnken响应面法优化北柴胡醋炙工艺及其对小鼠肝损伤保护作用研究

董蕊 逯影 王盼

董蕊,逯影,王盼. 熵权法结合Box-Behnken响应面法优化北柴胡醋炙工艺及其对小鼠肝损伤保护作用研究[J]. 食品工业科技,2021,42(23):209−217. doi:  10.13386/j.issn1002-0306.2021040008
引用本文: 董蕊,逯影,王盼. 熵权法结合Box-Behnken响应面法优化北柴胡醋炙工艺及其对小鼠肝损伤保护作用研究[J]. 食品工业科技,2021,42(23):209−217. doi:  10.13386/j.issn1002-0306.2021040008
DONG Rui, LU Ying, WANG Pan. The Process Optimization of Vinegar Roasting of Bupleurum chinense by Entropy Weight Method Combined with Box-Behnken Response Surface Method and Its Protective Effect on Mice Liver Injury[J]. Science and Technology of Food Industry, 2021, 42(23): 209−217. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021040008
Citation: DONG Rui, LU Ying, WANG Pan. The Process Optimization of Vinegar Roasting of Bupleurum chinense by Entropy Weight Method Combined with Box-Behnken Response Surface Method and Its Protective Effect on Mice Liver Injury[J]. Science and Technology of Food Industry, 2021, 42(23): 209−217. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021040008

熵权法结合Box-Behnken响应面法优化北柴胡醋炙工艺及其对小鼠肝损伤保护作用研究

doi: 10.13386/j.issn1002-0306.2021040008
基金项目: 国家中药标准化项目(ZYBZH-Y-JL-25)。
详细信息
    作者简介:

    董蕊(1975−),女,博士后,副教授,研究方向:天然产物化学与药理活性,E-mail:1042703124@qq.com

  • 中图分类号: R283

The Process Optimization of Vinegar Roasting of Bupleurum chinense by Entropy Weight Method Combined with Box-Behnken Response Surface Method and Its Protective Effect on Mice Liver Injury

  • 摘要: 目的:优化醋炙柴胡炮制工艺,探究柴胡醋炙前后对小鼠急性肝损伤的保肝作用。方法:熵权法结合Box-Behnken响应面设计法,对柴胡皂苷A、柴胡皂苷D、浸出物等指标综合评分,考察醋用量、闷润时间、炒制温度因素,以优化醋炙柴胡炮制工艺。建立对乙酰氨基酚(APAP)诱导小鼠急性肝损伤模型,分析柴胡醋炙前后对小鼠肝功能、炎症、氧化应激的影响。结果:醋柴胡炮制工艺参数为:醋用量23%,闷润时间2.8 h,炒制温度145 ℃,其指标含量分别为柴胡皂苷A 0.65%,柴胡皂苷D 0.74%,浸出物20.67%。醋柴胡组的小鼠血清中的谷丙转氨酶(ALT)、谷草转氨酶(AST)、肿瘤坏死因子-α、白细胞介素-6、白细胞介素-1β水平显著降低(P<0.05),肝组织中的还原型谷胱甘肽(GSH)、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)均有不同程度的提高,丙二醛(MDA)显著降低(P<0.05)。柴胡组对于GSH-Px和GSH的改善不明显。结论:熵权法结合Box-Behnken响应面法优化北柴胡醋炙的炮制工艺稳定。通过抑制炎症和缓解氧化应激,醋柴胡能够改善急性肝损伤,且效果比柴胡组更显著。
  • 图  1  混合对照品(A)、醋柴胡样品(B)和柴胡样品(C)的色谱图

    Figure  1.  Chromatograms of mixed reference(A), vinegar Chai Hu sample(B)and Chai Hu sample(C)

    注:1. SSA 2. SSD。

    图  2  醋用量、闷润时间、炒制温度对综合评分的影响

    Figure  2.  Effect of vinegar dosage, smothering and wetting time and frying temperature on the overall score

    注:不同小写字母表示差异显著(P<0.05);图4~图6同。

    图  3  醋用量、闷润时间、炒制温度两两交互作用的响应面图

    Figure  3.  Response surface diagram of the interaction between vinegar dosage, smothering and wetting time and frying temperature

    图  4  柴胡、醋柴胡对APAP诱导急性肝损伤小鼠AST、ALT的影响(n=8)

    Figure  4.  Effect of Chai Hu and vinegar Chai Hu on AST and ALT in APAP-induced acute liver injury mice (n=8)

    图  5  各组小鼠血清IL-1β、IL-6、TNF-α炎症因子水平(n=8)

    Figure  5.  IL-1β, IL-6 and TNF-α serum cytokine levels of mice in different groups (n=8)

    图  6  柴胡、醋柴胡对小鼠肝组织中SOD、GSH-Px、GSH、MDA的影响(n=8)

    Figure  6.  Effect of Chai Hu and vinegar Chai Hu on SOD, GSH-Px, GSH and MDA in mouse liver tissues (n=8)

    图  7  APAP诱导肝损伤小鼠的肝组织病理图像(400×)

    Figure  7.  Histological images of the liver tissue of mice with APAP induced liver injury(400×)

    表  1  响应面试验的因素和水平

    Table  1.   Factors and levels of response surface testing

    水平因素
    A 醋用量(%)B 闷润时间(h)C 炒制温度(℃)
    −1202130
    0253140
    1304150
    下载: 导出CSV

    表  2  Box-Behnken 试验设计与结果

    Table  2.   Box-Behnken trial design and results

    序号因素指标含量(${\overline{{\rm{x}}}} $±s)综合评分M(${\overline{{\rm{x}}}} $±s)
    A醋用量B闷润时间C炒制温度SSA(%)SSD(%)浸出物(%)
    11−100.64±0.050.69±0.1020.86±0.217.057±0.18
    201−10.46±0.030.52±0.0820.25±0.177.150±0.15
    30110.47±0.040.54±0.0920.28±0.127.194±0.12
    410−10.54±0.040.60±0.0920.57±0.197.116±0.16
    50000.63±0.060.69±0.1120.73±0.257.283±0.21
    60000.53±0.040.55±0.0820.33±0.097.267±0.12
    7−1100.62±0.070.73±0.1420.83±0.217.077±0.26
    81100.57±0.900.67±0.1220.68±0.197.150±0.16
    9−1−100.58±0.060.67±0.1220.70±0.287.243±0.27
    100−110.53±0.070.59±0.0820.39±0.147.213±0.21
    110−1−10.58±0.110.69±0.1320.73±0.167.164±0.22
    12−1010.59±0.090.70±0.1520.75±0.197.240±0.22
    131010.65±0.130.76±0.1320.85±0.187.187±0.19
    140000.65±0.080.74±0.0920.87±0.217.267±0.28
    15−10−10.67±0.120.75±0.1120.89±0.227.230±0.31
    下载: 导出CSV

    表  3  回归模型方差结果

    Table  3.   Regression model variance results

    方差来源平方和自由度均方FP显著性
    模型0.06790.0074749.220.0002**
    A0.009810.0098264.690.0005**
    B0.001410.001439.440.0277*
    C0.003810.0038025.020.0041**
    AB0.016910.01686111.070.0001**
    AC0.000910.000915.970.0585
    BC0.0000110.000010.0500.8326
    A20.015010.0150298.980.0002**
    B20.021910.02187144.12<0.0001**
    C20.0008510.000855.620.0640
    残差0.000750.00015
    失拟项0.000630.000192.120.3366
    净误差0.0001820.00009
    总和0.06814
    R2=0.9888Radj2=0.9687
    注:*表示显著(P<0.05),**表示极显著(P<0.01 )。
    下载: 导出CSV
  • [1] WANG X J, WU M J, YA H F, et al. Screening of protective effect of Cichorium intybus polysaccharides on drug-induced liver injury in mice[J]. Modern Animal Husbandry and Veterinary,2021(4):9−13.
    [2] PARLATI L, VOICAN C S, PERLEMUTER K, et al. Aloe vera-induced acute liver injury: A case report and literature review[J]. Clinics and Research in Hepatology and Gastroenterology,2017,41(4):39−42. doi:  10.1016/j.clinre.2016.10.002
    [3] SUN T F, WANG P, ZHANG C L. Research progress of Chinese medicine in the treatment of liver injury[J]. Pharmacological Research,2014,33(12):715−717.
    [4] XIE Y J, LIU W, ZHANG Z M, et al. Protective effects of oleuropean leaf alcohol extract on acute liver injury caused by D-galactosamine/lipopolysaccharide in mice and its mechanism of action[J]. Science and Technology of Food Industry,2018,39(03):315−319.
    [5] LIN F W, WANG Z S, RONG Z, et al. Pharmacological action, chemical constituents, development and utilization ofRadix Bupleuri[J]. Asia Pacific Traditional Medicine,2020,16(10):202−205.
    [6] CONG M Y, GONG Y R, LIANG S B, et al. HPLC-ELSD fingerprint analysis of the effects of extraction and processing on the chemical constituents in Bupleurum[J]. Chinese Journal of Experimental Prescriptions,2018,24(7):13−17.
    [7] Wu H W, Wang L Y, LI D H, et al. Advances in the pharmacological effects of saikoside[J]. Journal of Chinese Veterinary Medicine,2020,39(6):35−39.
    [8] ZHAO X M. Study on the efficacy and hepatotoxicity of vinegar-made Chai Hu in relieving liver depression[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2019.
    [9] YIN X, MANG G W, XIANG F X, et al. Study on the pharmacological effects of Bupleurum saponins and flavonoids[J]. Horticulture and Seedling,2018,38(7):29−31.
    [10] LI Y, XU Q C. Modern clinical application of blood mansions and blood stasis tang[J]. Electronic Journal of Clinical Medicine Literature,2019,6(77):168.
    [11] ZHU Y, CHEN X, RAO X, et al. Saikosaponin a ameliorates lipopolysaccharide and d-galactosamine-induced liver injury via activating LXRα[J]. Int Immunopharmacol,2019,72:131−137. doi:  10.1016/j.intimp.2019.03.049
    [12] ZHANG N, LI Y. Study on the protective effect of saikosaponin d on human hepatocyte injury and the exploration ofanti-liver fibrosis mechanism[J/OL]. Chinese Journal of Traditional Chinese Medicine: 1−15. [2021-06-05]. http://kns.cnki.net/kcms/detail/21.1546.R.20210511.1105.010.html.
    [13] MO X L, GUO D K, ZHOU C J, et al. Optimization of the vinification process of Chai Hu based on box-behnken response surface method[J]. Chinese medicinal materials,2019,42(11):2547−2550.
    [14] YANG J, ZHU D, MA X P, et al. Study on the quality standard of the characteristic concoction method of Chaihu Guizhou[J]. Shandong Chemical Industry,2021,50(5):34−36,38.
    [15] LIU Q, QIN X, LIANG X L, et al. Discussion on the medicinal parts, preparation specification and quality control of Chai Hu[J]. Special Economic Flora and Fauna,2020,23(5):18−23.
    [16] ZHANG W, CHEN P, ZHU L. Exploring the experience of concoction of Chai Hu in vinegar[J]. Primary Medical Forum,2019,23(17):2476−2477.
    [17] LIU D P, WANG Y, ZHANG G X, et al. Progress of research on the origin processing and concoction methods of Bupleurum[J]. Chinese Journal of Experimental Formulary,2019,25(19):204−211.
    [18] AN Y, YANG T S, LIU Y Q. Orthogonal test for the optimal concoction process of Chai Hu[J]. Ningxia Medical Journal,2013,35(6):557−559.
    [19] PAN X L, QU L H, WANG J, et al. Orthogonal test method to optimize the concoction process of wine Chai Hu[J]. Chinese Journal of Hospital Pharmacy,2018,38(9):942−945.
    [20] YU H, LI X N, ZHONG L Y, et al. Multi-indicator orthogonal test to optimize the concoction process of Turtle Blood Chai Hu[J]. Chinese Journal of Experimental Formulation,2015,21(15):8−11,7.
    [21] TONG X, WANG Y, GAO R, et al. Optimization of the extraction of total alkaloids from desiccated mabo by orthogonal experimental coupling with response surface methodology[J]. Drug Biotechnology,2013,20(3):245−249.
    [22] LIU S L, ZHOU Y L, LIN P, et al. Box-behnken response surface method for optimizing the alcohol extraction process of purple-red raw muscle ointment[J]. Journal of Hunan University of Traditional Chinese Medicine,2021,41(4):528−535.
    [23] LI Y H, RAN M Q, XU M H, et al. Comparison and comprehensive evaluation of fruit quality of different varieties of kiwifruit[J]. Food and Fermentation Industry,2020,46(23):162−168.
    [24] CHENG Y Q, SHI L, LAI P F. Optimization of β-cyclodextrin encapsulation process of volatile oil of Angelica paeoniae San based on entropy weight method and orthogonal design[J]. Chinese Herbal Medicine,2021,52(10):2951−2957.
    [25] FU Y, CHENG S Y, CHEN H, et al. Multi-indicator optimization of siderophore extraction process by response surface method combined with entropy weighting method[J]. Chinese Materia Medica,2021(2):404−408.
    [26] National Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China[M]. Beijing: China Pharmaceutical Science and Technology Press, 2015.
    [27] JI H G, YANG X F, HUI Y Y, et al. Optimization of the extraction of total saponin from Chai Hu by response surface method[J]. Applied Chemistry,2020,49(11):2787−2790,2794.
    [28] ZENG H R, LI T N, RAN Q, et al. Optimization of the extraction process of Gui Zhi Shao Yao Zhi Mu granules based on entropy weight method combined with Box-Behnken response surface method[J]. Chinese Herbal Medicine,2020,51(1):84−90.
    [29] XUAN R R, CHEN Y P, LIU C J, et al. Quality evaluation of fresh glutinous corn based on entropy weight method and grey correlation method[J/OL]. Science and Technology of Food Industry: 1−14 [2021-06-03]. http://kns.cnki.net/kcms/detail/11.1759.TS.20210126.0943.004.html.
    [30] WEI X M, YAN M H, WANG Z, et al. Protective effects of ginseng glycosides on acetaminophen-induced experimental liver injury in mice[J]. Journal of Jilin Agricultural University,2020,42(6):638−645.
    [31] PAN Y N, ZHAO X, LONG X Y, et al. Preventive effect of big leaf bitter tea polyphenols on carbon tetrachloride induced liver injury in mice[J]. Science and Technology of Food Industry,2019,40(9):287−294.
    [32] HU J N, LIU Z, ZI W, et al. Ameliorative effects and possible molecular mechanism of action of black ginseng (Panax ginseng) on acetaminophen-mediated liver injury[J]. Molecules,2017,22(4):664. doi:  10.3390/molecules22040664
    [33] ZHAO X, LI G J, HU Y Y, et al. Ameliorative effect and mechanism of bitter tea polyphenol extract on carbon tetrachloride-induced liver injury in mice[J]. Science and Technology of Food Industry,2018,39(4):289−295.
    [34] LI F, BAO H Y. Protective effects of ginseng root total saponin on APAP-induced acute liver injury in mice[J]. Shanghai Medicine,2019,40(3):55−59.
    [35] HE M, ZHANG S, JIAO Y, et al. Effect and mechanisms of rifampin on hepatotoxicity of acetaminophen in mice[J]. Food Chem Toxicol,2012,50(9):3142−3149. doi:  10.1016/j.fct.2012.06.020
    [36] WANG R, SUN P. Preventive effect of total flavonoids of Hua Xiang worm tea on CCl4-induced liver injury in mice[J]. Science and Technology of Food Industry,2015,36(11):361−364,368.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-02
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升