微波和超声处理对麦麸研磨特性及全麦面团品质的影响

叶子谦 王沛 董华 杨克胜 陈美容 陆兆新 吕凤霞

叶子谦,王沛,董华,等. 微波和超声处理对麦麸研磨特性及全麦面团品质的影响[J]. 食品工业科技,2021,42(20):106−111. doi:  10.13386/j.issn1002-0306.2021030272
引用本文: 叶子谦,王沛,董华,等. 微波和超声处理对麦麸研磨特性及全麦面团品质的影响[J]. 食品工业科技,2021,42(20):106−111. doi:  10.13386/j.issn1002-0306.2021030272
YE Ziqian, WANG Pei, DONG Hua, et al. Effects of Microwave and Ultrasound Treatment on the Grinding Characteristics of Wheat Bran and the Quality of Whole Wheat Dough[J]. Science and Technology of Food Industry, 2021, 42(20): 106−111. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030272
Citation: YE Ziqian, WANG Pei, DONG Hua, et al. Effects of Microwave and Ultrasound Treatment on the Grinding Characteristics of Wheat Bran and the Quality of Whole Wheat Dough[J]. Science and Technology of Food Industry, 2021, 42(20): 106−111. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030272

微波和超声处理对麦麸研磨特性及全麦面团品质的影响

doi: 10.13386/j.issn1002-0306.2021030272
基金项目: 江苏省科技计划项目(BE2018319)
详细信息
    作者简介:

    叶子谦(1996−),女,硕士研究生,研究方向:食品加工,E-mail:1151754439@qq.com

    通讯作者:

    吕凤霞(1963−),女,博士,教授,研究方向:食品微生物与生物技术,E-mail:lufengxia@njau.edu.cn

  • 中图分类号: TS211.4

Effects of Microwave and Ultrasound Treatment on the Grinding Characteristics of Wheat Bran and the Quality of Whole Wheat Dough

  • 摘要: 麦麸经过微波与超声处理后,研磨筛分成粗(280~450 μm)、中(154~180 μm)、细(≤71 μm)三种粒径,再将不同粒径麦麸回添至面粉中制成全麦面团,以此探究微波和超声处理以及不同粒径对全麦面团的全质构、动态流变学性质以及游离巯基的影响。麦麸的相对酶活与粒径分布表明,超声处理和微波处理均能较好提升稳定化效果和粉碎效率,且超声处理组的效果更好(P<0.05)。面团的品质显示,随麦麸粒径减小,微波处理组的硬度和胶黏性呈现下降趋势,内聚性呈现上升的趋势,超声处理组的硬度和胶黏性均小于微波处理组(P<0.05);微波组弹性模量和黏性模量随着麦麸的粒径减小而减小,同种粒径时,超声处理组弹性模量和黏性模量均小于微波处理组;随麦麸粒径减小,各处理组的游离巯基含量逐渐降低,且超声处理组的游离巯基含量降低幅度大于微波处理组(P<0.05)。微波与超声处理及麦麸粒径的减小均能有效改善面团的品质,且超声处理的麦麸对面团品质影响相比微波组更显著。
  • 图  1  不同稳定化方式对麦麸中残余酶活的影响

    Figure  1.  Effects of different stabilization treatments on the relative enzyme activity in wheat bran

    注:小写字母不同表示不同稳定化方式同一种酶数据差异显著(P<0.05)。

    图  2  不同稳定化处理后麦麸粒径的分布

    Figure  2.  Particle size distribution of wheat bran after different stabilization treatments

    图  3  不同处理组全麦面团的弹性模量(G′)、黏性模量(G′′)

    Figure  3.  Elastic modulus (G′) and viscous modulus (G′′) of whole wheat dough in different stabilization treatment groups

    表  1  不同稳定化方式对麦麸平均粒径和比表面积的影响

    Table  1.   Effects of different stabilization treatments on average particle size and specific surface area of wheat bran

    稳定化方式D10D50D90S.S.AD(3,2)D(4,3)
    (μm)(μm)(μm)(m2/mL)(μm)(μm)
    原料麦麸16.53±0.68c319.00±9.64c686.33±10.07c122.67±4.68a46.63±1.80b324.33±7.57b
    微波14.87±0.51b240.00±2.00b614.67±5.77b138.33±5.17b41.37±1.50a271.67±4.51a
    超声结合酸13.73±0.38a212.00±13.11a561.00±39.00a146.70±4.33b38.97±1.10a253.00±17.58a
    注:同列字母不同表示差异显著(P<0.05);表2同。
    下载: 导出CSV

    表  2  不同稳定化及粒径的麦麸对面团全质构的影响

    Table  2.   Effect of wheat bran with different stabilization treatment and particle size on the TPA of dough

    粒度稳定化方式硬度(N)内聚性弹性(mm)胶黏性(N·mm)
    普通面粉1.53±0.07b0.23±0.00d0.71±0.03d,e0.46±0.03b
    原料麦麸2.32±0.11e0.18±0.01b0.73±0.06e0.58±0.03c
    1.99±0.07d0.21±0.01c0.70±0.05d,e 0.54±0.02c
    1.53±0.12b0.26±0.01e0.73±0.05e0.47±0.01b
    微波2.00±0.14d0.17±0.01b0.65±0.04c,d0.49±0.03b
    1.82±0.10c0.18±0.01b0.64±0.02c0.48±0.03b
    1.61±0.05b0.22±0.02c0.70±0.06d,e0.46±0.02b
    超声结合酸1.34±0.11a0.10±0.01a0.37±0.01b0.20±0.02a
    1.28±0.02a0.09±0.01a0.33±0.04b0.20±0.00a
    1.24±0.07a0.09±0.01a0.26±0.01a0.19±0.02a
    下载: 导出CSV

    表  3  麦麸不同处理及粒径对全麦面团游离巯基含量的影响

    Table  3.   Effect of different treatment and particle size on free sulfhydryl content of whole wheat dough

    粒径游离巯基(μmoL/g)
    原料麦麸微波超声结合酸
    4.55±0.32d4.25±0.05d4.18±0.05d
    4.52±0.30d3.65±0.16c3.22±0.03b
    3.06±0.11b3.09±0.05b2.61±0.10a
    注:字母不同表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 陈佳佳, 谢天, 任晨刚, 等. 全麦粉在国内食品工业中的应用状况和前景[J]. 粮食与饲料工业,2018(7):4−8. [Chen J J, Xie T, Ren C, et al. Application status and prospects of whole wheat flour in domestic food industry[J]. Food and Feed Industry,2018(7):4−8.
    [2] 朱恩俊, 夏玉琳, 于爽. 全麦粉加工工艺研究进展[J]. 河南工业大学学报(自然科学版),2016,37(6):123−127. [Zhu E J, Xia Y L, Yu S. Research progress of whole wheat flour processing technology[J]. Journal of Henan University of Technology (Natural Science Edition),2016,37(6):123−127.
    [3] Zhu Y, Sang S. Phytochemicals in whole grain wheat and their health-promoting effects[J]. Molecular Nutrition & Food Research,2017:1600852.
    [4] Sandvik P, Nydahl M, Kihlberg I, et al. Consumers' health-related perceptions of bread-Implications for labeling and health communication[J]. Appetite,2018,121:285−293. doi:  10.1016/j.appet.2017.11.092
    [5] Zhao G, Zhang R, Dong L, et al. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties[J]. LWT-Food Science and Technology,2017:87.
    [6] 渠琛玲, 刘胜强, 王若兰, 等. 全麦粉的微波稳定化工艺优化[J]. 食品与发酵工业,2016(11):121−125. [Qu C L, Liu S Q, Wang R L, et al. Microwave stabilization process optimization of whole wheat flour[J]. Food and Fermentation Industry,2016(11):121−125.
    [7] Niu M, Hou G G, Li X, et al. Inhibitory effects of ultrasound combined with ascorbic acid or glutathione on enzymatic darkening of whole-wheat raw noodles[J]. LWT-Food Science and Technology,2014,59(2):901−907. doi:  10.1016/j.lwt.2014.06.056
    [8] Hemdane S, Jacobs P J, Dornez E, et al. Wheat (Triticum aestivum L.) bran in bread making: A critical review[J]. Comprehensive Reviews in Food Science & Food Safety,2016,15(1):28−42.
    [9] 张岩岩, 李雪杰, 张剑, 等. 微波辐照对直接研磨法全麦粉的储藏稳定性与品质的影响[J]. 河南农业大学学报,2020,54(3):506−512. [Zhang Y Y, Li X J, Zhang J, et al. Effect of microwave irradiation on storage stability and quality of direct grinding whole wheat flour[J]. Journal of Henan Agricultural University,2020,54(3):506−512.
    [10] 王君茹, 林江涛, 苏东民. 不同稳定化方法对麦胚储藏特性的影响研究[J]. 粮食加工,2018,43(1):18−22. [Wang J R, Lin J T, Su D M. The effect of different stabilization methods on the storage characteristics of wheat germ[J]. Food Processing,2018,43(1):18−22.
    [11] Mohammadi F, Marti A, Nayebzadeh K, et al. Effect of washing, soaking and pH in combination with ultrasound on enzymatic rancidity, phytic acid, heavy metals and coliforms of rice bran-ScienceDirect[J]. Food Chemistry,2020:334.
    [12] 姚慧慧, 王燕, 吴卫国, 等. 酸改性麦麸粉对面粉粉质特性及面团质构特性的影响[J]. 食品科学,2019,40(2):59−64. [Yao H H, Wang Y, Wu W G, et al. Effect of acid-modified wheat bran powder on flour quality and dough texture properties[J]. Food Science,2019,40(2):59−64. doi:  10.7506/spkx1002-6630-20171114-163
    [13] Steglich T, Bernin D, Moldin A, et al. Bran particle size influence on pasta microstructure, water distribution and sensory properties[J]. Cereal Chemistry,2015:150602093447005.
    [14] Vignola M B, Bustos M C, Perez G T. In vitro dialyzability of essential minerals from white and whole grain pasta[J]. Food Chemistry,2018,265(Nov. 1):128.
    [15] Niu M, Hou G G, Wang L, et al. Effects of superfine grinding on the quality characteristics of whole-wheat flour and its raw noodle product[J]. Journal of Cereal Science,2014,60(2):382−388. doi:  10.1016/j.jcs.2014.05.007
    [16] 陶春生, 王克俭, 刘学军, 等. 麦麸添加量和粒度对饺子皮品质的影响[J]. 食品工业科技,2019,40(11):28−32. [Tao C S, Wang K J, Liu X J, et al. The effect of the addition amount and particle size of wheat bran on the quality of dumpling wrappers[J]. Food Industry Science and Technology,2019,40(11):28−32.
    [17] Savitha J, Srividya S, Jagat R, et al. Identification of potential fungal strain(s) for the production of inducible, extracellular and alkalophilic lipase[J]. African Journal of Biotechnology,2007,6(5):564−568.
    [18] 张建友, 洪灿东, 戚雅楠, 等. 小麦胚芽红外干燥工艺优化及其对贮藏品质的影响[J]. 核农学报,2018,32(6):1144−1152. [Zhang J Y, Hong C D, Qi Y N, et al. Optimization of infrared drying technology for wheat germ and its effect on storage quality[J]. Chinese Journal of Nuclear Agriculture,2018,32(6):1144−1152. doi:  10.11869/j.issn.100-8551.2018.06.1144
    [19] Zhang J, Yin T, Xiong S, et al. Thermal treatments affect breakage kinetics and calcium release of fish bone particles during high-energy wet ball milling[J]. Journal of Food Engineering,2016(183):74−80.
    [20] Xu C, Wu J H, Ling L, et al. The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze-thaw cycles[J]. European Food Research and Technology,2016,243(7):1−8.
    [21] Chattong U, Apichartsrangkoon A. Dynamic viscoelastic characterisation of ostrich-meat yor(Thai sausage) following pressure, temperature and holding time regimes[J]. Meat Science,2009,81(3):426−32. doi:  10.1016/j.meatsci.2008.09.006
    [22] Li D, Zhao Y K, Fei T, et al. Effects of Streptococcus thermophilus GtfB enzyme on dough rheology, bread quality and starch digestibility[J]. Food Hydrocolloid,2019,96:134−9. doi:  10.1016/j.foodhyd.2019.05.009
    [23] Mei L, Ying L, Hui Z, et al. Production of a recombinant carrot antifreeze protein by Pichia pastoris GS115 and its cryoprotective effects on frozen dough properties and bread quality[J]. LWT-Food Science and Technology,2018,96:543−550. doi:  10.1016/j.lwt.2018.05.074
    [24] Kermasha S, Biskowski B, Ramaswamy H. Comparison of microwave, conventional and combination heat treatments on wheat germ lipase activity[J]. International Journal of Food Science and Technology,1993,28(6):617−623.
    [25] Thakur B R, Nelson P E. Inactivation of lipoxygenase in whole soy flour suspension by ultrasonic cavitation[J]. Molecular Nutrition & Food Research,1997,41(5):299−301.
    [26] Li L, Ma S, Fan L, et al. The influence of ultrasonic modification on arabinoxylans properties obtained from wheat bran[J]. International Journal of Food Science & Technology,2016,51(11):2338−44.
    [27] 刘珍, 杨刚, 杨国浩, 等. 饲料粉碎设备科技进展[J]. 饲料研究,2019,42(10):116−118. [Liu Z, Yang G, Yang G H, et al. Progress in feed milling equipment technology[J]. Feed Research,2019,42(10):116−118.
    [28] 张昂. 超微粉碎小麦麸皮的功能特性及应用研究进展[J]. 现代食品,2019(22):119−121. [Zhang A. The functional proper-ties and application research progress of ultra-fine pulverized wheat bran[J]. Modern Food,2019(22):119−121.
    [29] 徐小云. 麦麸超微粉碎对面团流变学特性及馒头品质影响研究[D]. 合肥: 安徽农业大学, 2018.

    Xu X Y. Study on the effect of wheat bran ultrafine grinding on the rheological properties of dough and the quality of steamed bread[D]. Hefei: Anhui Agricultural University, 2018.
    [30] Zhang H X, Chen G J, Liu M, et al. Effects of multi-frequency ultrasound on physicochemical properties, structural characteristics of gluten protein and the quality of noodle[J]. Ultrasonics Sonochemistry,2020:67.
    [31] 黄达伟, 马宁, 杜喜坤. 超声对小麦面筋蛋白功能性质的影响[J]. 食品与发酵科技,2014,50(3):42−45. [Huang D W, Ma N, Du X K. The effect of ultrasound on the functional properties of wheat gluten[J]. Food and Fermentation Technology,2014,50(3):42−45.
    [32] Li M, Zhu K X, Peng J, et al. Delineating the protein changes in Asian noodles induced by vacuum mixing[J]. Food Chemistry,2014,143(Jan. 15):9−16.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  30
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 网络出版日期:  2021-08-31
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升