超声微波协同制备粗毛纤孔菌多糖及体外降脂作用的研究

赵有伟 李德海

赵有伟,李德海. 超声微波协同制备粗毛纤孔菌多糖及体外降脂作用的研究[J]. 食品工业科技,2021,42(20):191−198. doi:  10.13386/j.issn1002-0306.2021030221
引用本文: 赵有伟,李德海. 超声微波协同制备粗毛纤孔菌多糖及体外降脂作用的研究[J]. 食品工业科技,2021,42(20):191−198. doi:  10.13386/j.issn1002-0306.2021030221
ZHAO Youwei, LI Dehai. Ultrasonic and Microwave Synergistic Preparation of Polysaccharide from Inonotus hispidus and Its Effect on Lowering Lipid in Vitro[J]. Science and Technology of Food Industry, 2021, 42(20): 191−198. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030221
Citation: ZHAO Youwei, LI Dehai. Ultrasonic and Microwave Synergistic Preparation of Polysaccharide from Inonotus hispidus and Its Effect on Lowering Lipid in Vitro [J]. Science and Technology of Food Industry, 2021, 42(20): 191−198. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030221

超声微波协同制备粗毛纤孔菌多糖及体外降脂作用的研究

doi: 10.13386/j.issn1002-0306.2021030221
基金项目: 中央高校基本科研业务经费专项资金(2572019BA04);哈尔滨市科技局创新研究基金(2017RAQXJ091);黑龙江省自然科学基金面上项目(C2015062)
详细信息
    作者简介:

    赵有伟(1996−),男,硕士研究生,研究方向:功能性食品,E-mail:923341816@qq.com

    通讯作者:

    李德海(1976−),男,博士,副教授,研究方向:食品化学及植物功能成分研究,E-mail:lidehaineau@163.com

  • 中图分类号: TS201.4

Ultrasonic and Microwave Synergistic Preparation of Polysaccharide from Inonotus hispidus and Its Effect on Lowering Lipid in Vitro

  • 摘要: 本文对粗毛纤孔菌多糖的提取及体外降脂作用进行研究,为粗毛纤孔菌多糖的开发利用提供理论依据。试验以粗毛纤孔菌为原料,以多糖提取率为考察指标,采用单因素实验和Box-Behnken试验设计研究了超声微波协同制备粗毛纤孔菌多糖(IHP)的工艺,对比分析了热水提取法和超声波辅助法对IHP提取率和体外胆酸盐结合能力的影响。结果表明,IHP的最佳提取工艺参数为:料水比1:33 g:mL,微波时间50 s,微波功率500 W,超声时间51 min,超声波功率200 W,此条件下多糖提取率为85.61%。与超声波辅助法和热水提取法相比,提取率分别增加了24.87%和36.38%。三种提取方法制备的IHP体外胆酸盐结合实验结果表明,IHP对牛磺胆酸钠和甘氨胆酸钠具有显著的结合能力,与多糖剂量呈正相关,且IHP对牛黄胆酸钠的结合能力强于甘氨胆酸钠。IHP在相同质量浓度条件下,三种提取方法制备的多糖对胆酸盐的结合能力为超声微波辅助提取>超声辅助提取>热水浸提,且超声微波辅助制备的多糖对甘氨胆酸钠和牛磺胆酸钠结合率分别为30.93%、32.13%。本研究表明超声微波辅助提取法能够显著提高IHP提取效果和体外结合胆酸盐的能力,为制备高活性IHP及其开发利用提供理论依据。
  • 图  1  料液比对IHP提取率的影响

    Figure  1.  Effect of material-to-liquid ratio on the extraction rate of IHP

    图  2  超声时间对IHP提取率的影响

    Figure  2.  Effect of ultrasound time on the extraction rate of IHP

    图  3  超声功率对IHP提取率的影响

    Figure  3.  Effect of ultrasonic power on the extraction rate of IHP

    图  4  微波功率对IHP提取率的影响

    Figure  4.  Effect of microwave power on the extraction rate of IHP

    图  5  微波时间对IHP提取率的影响

    Figure  5.  Effect of microwave time on the extraction rate of IHP

    图  6  不同提取方法对IHP提取率的影响

    Figure  6.  Effect of different extraction methods on the extraction rate of IHP

    图  7  三种不同方式提取多糖结合甘氨胆酸钠能力

    Figure  7.  Binding ability of polysaccharides extracted in three different ways to sodium glycocholate

    图  8  三种不同方式提取多糖结合牛黄胆酸钠能力

    Figure  8.  Binding ability of polysaccharides extracted in three different ways to sodium taurocholate

    表  1  响应面设计因素水平及编码

    Table  1.   Factors, levels and coding for response surface design

    因素编码水平
    −101
    超声时间(min)A405060
    微波时间(s)B405060
    微波功率(W)C200400600
    料液比(g:mL)D1:201:301:40
    下载: 导出CSV

    表  2  Box-Behnken试验设计和结果

    Table  2.   Box-Behnken experimental design and results

    实验号因素提取率(%)
    ABCD
    1000085.26
    2001183.35
    3000085.34
    4100−171.31
    5−100174.12
    6−100−164.51
    70−11076.55
    8110074.23
    90−1−1078.22
    10−110073.31
    111−10076.54
    1200−1−169.22
    130−10171.88
    14010178.65
    15000084.68
    16011078.36
    17010−159.36
    1800−1179.17
    1901−1072.68
    20100176.93
    21−101080.59
    22−1−10072.12
    23001−170.31
    24000085.22
    2510−1078.46
    260−10−173.84
    27101082.26
    28−10−1076.53
    29000083.21
    下载: 导出CSV

    表  3  Box-Behnken试验方差分析

    Table  3.   Box-Behnken experiment variance analysis

    来源平方和自由度均方FP显著性
    模型1072.1714.0076.5837.59<0.0001**
    A28.681.0028.6814.080.0021**
    B13.151.0013.156.450.0236*
    C24.481.0024.4812.020.0038**
    D257.151.00257.15126.23<0.0001**
    AB3.061.003.061.500.2404
    AC0.0171.000.0170.0082960.9287
    AD3.981.003.981.950.1839
    BC13.511.0013.516.630.0220*
    BD112.891.00112.8955.42<0.0001**
    CD2.391.002.391.170.2973
    A2128.151.00128.1562.90<0.0001**
    B2260.811.00260.81128.03<0.0001**
    C211.751.0011.755.770.0308*
    D2412.781.00412.78202.62<0.0001**
    残差28.5214.002.04
    拟失项25.3210.002.533.160.1394不显著
    纯误差3.214.000.80
    总变异1100.6928.00
    注:*表示显著(P<0.05),**表示极显著(P<0.01)。
    下载: 导出CSV
  • [1] 冯彦, 高晓霞, 秦雪梅. 柴胡及其类方降脂疗效和作用机制研究进展[J]. 中药材,2019,42(8):1957−1961. [Feng Y, Gao X X, Qin X M. Research progress on lipid-lowering efficacy and mechanism of Chaihu and its derivatives[J]. Chinese Medicinal Materials,2019,42(8):1957−1961.
    [2] 郭艺芳. 2014年中国胆固醇教育计划血脂异常防治专家建议[J]. 中华心脏与心律电子杂志,2014,2(3):12−16. [Guo Y F. Proposals from experts on the prevention and treatment of dyslipidemia in the 2014 China Cholesterol Education Program[J]. Chinese Journal of Heart and Rhythm Electronics,2014,2(3):12−16. doi:  10.3877/cma.j.issn.2095-6568.2014.3.007
    [3] Shirin Hasani-Ranjbar et al. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia: A systematic review[J]. Current Pharmaceutical Design,2010,16(26):2935−2947. doi:  10.2174/138161210793176464
    [4] Markakis Emmanouil A. Characterization of fungi associated with wood decay of tree species and grapevine in Greece[J]. Plant disease,2017,101(11):1929−1940. doi:  10.1094/PDIS-12-16-1761-RE
    [5] Yang S D, Bao H Y, Wang H, et al. Anti-tumour effect and pharmacokinetics of an active ingredient isolated from Inonotus hispidus[J]. Biological and Pharmaceutical Bulletin,2019,42(1):10−17. doi:  10.1248/bpb.b18-00343
    [6] 唐少军, 雷平, 邵晨霞等. 粗毛纤孔菌液体发酵工艺优化及胞外多糖的抗菌和抗肿瘤活性[J]. 食品工业科技,2021,42(5):93−99. [Tang S J, Lei P, Shao C X, et al. Optimization of liquid fermentation process of ciloporus crassicarpa and the antibacterial and antitumor activities of extracellular polysaccharides[J]. Food Industry Science and Technology,2021,42(5):93−99.
    [7] Liu X, Hpu R L, Xu K Q, et al. Extraction, characterization and antioxidant activity analysis of the polysaccharide from the solid-state fermentation substrate of Inonotus hispidus[J]. International Journal of Biological Macromolecules,2019,123:468−476. doi:  10.1016/j.ijbiomac.2018.11.069
    [8] 李德海, 杜令娟, 康宁, 等. 提取技术对粗毛纤孔菌三萜类化合物制备及体外降血脂作用的影响[J]. 食品科学,2018,39(10):291−297. [Li D H, Du L J, Kang N, et al. The effect of extraction technology on the preparation of triterpenoids from Ciliomyces crassipes and its in vitro hypolipidemic effect[J]. Food Science,2018,39(10):291−297. doi:  10.7506/spkx1002-6630-201810044
    [9] Carsten Gründemann et al. Effects ofInonotus hispidus extracts and compounds on human immunocompetent cells[J]. Planta Med,2016,82(15):1359−1367. doi:  10.1055/s-0042-111693
    [10] Angelini et al. A comparative study of the antimicrobial and antioxidant activities ofInonotus hispidus fruit and their mycelia extracts[J]. International Journal of Food Properties,2019,22(1):768−783. doi:  10.1080/10942912.2019.1609497
    [11] 刘爽爽, 王昀睿, 李德海. 粗毛纤孔菌三萜的提取及胆酸盐结合研究[J]. 中南林业科技大学学报,2019,39(10):132−138. [Liu S S, Wang Y R, Li D H. Study on the extraction of triterpenes and bile salt binding ofCiliomyces lasicum[J]. Journal of Central South University of Forestry and Technology,2019,39(10):132−138.
    [12] Ren Q , Lu X Y , Han J X, et al. Triterpenoids and phenolics from the fruiting bodies of Inonotus hispidus and their activations of melanogenesis and tyrosinase[J]. Chinese Chemical Letters,2017,28(5):1052−1056. doi:  10.1016/j.cclet.2016.12.010
    [13] Liu Xin, Hou Ruolin, Yan Junjie, et al. Purification and characterization of Inonotus hispidus exopolysaccharide and its protective effect on acute alcoholic liver injury in mice[J]. International Journal of Biological Macromolecules,2019,129:41−49. doi:  10.1016/j.ijbiomac.2019.02.011
    [14] 张媛, 包海鹰. 四种多孔菌子实体粗多糖抗肿瘤活性的比较研究[J]. 菌物学报,2014,33(1):114−120. [Zhang Y, Bao H Y. Comparative study on the anti-tumor activity of crude polysaccharides from the fruiting bodies of four polypores[J]. Acta Mycologica Sinica,2014,33(1):114−120.
    [15] Tan Mei Chin Beverly, Ali Asgar, Kamal Hina, et al. Optimizing parameters on the antioxidant capacity of watermelon pulp using conventional orbital shaker and ultrasound-assisted extraction methods[J]. Journal of Food Processing and Preservation,2020,45(2):e15123.
    [16] 张倩, 李书启. 不同提取方法对枸杞多糖提取率及抗氧化活性的影响[J]. 江苏农业科学,2019,47(3):169−173. [Zhang Q, Li S Q. Effects of different extraction methods on extraction rate and antioxidant activity of Lycium barbarum polysaccharides[J]. Jiangsu Agricultural Sciences,2019,47(3):169−173.
    [17] 苏平, 孙昕, 宋思圆, 等. 提取方法对黄秋葵花多糖的结构组成及抗氧化活性的影响[J]. 食品科学,2018,39(15):93−100. [Su P, Sun X, Song S Y, et al. Effects of extraction methods on the structure and antioxidant activity of polysaccharides from Abelmoschus manihot[J]. Food Science,2018,39(15):93−100. doi:  10.7506/spkx1002-6630-201815014
    [18] 马舒伟, 刘兴艳, 贾占东, 等. 不同提取方法对玄参多糖单糖组分和抗氧化活性的影响[J]. 中华中医药学刊,2020,38(1):220−224, 285. [Ma S W, Liu X Y, Jia Z D, et al. Effects of different extraction methods on monosaccharide components and antioxidant activity of Radix Scrophulariae polysaccharide[J]. Chinese Journal of Traditional Chinese Medicine,2020,38(1):220−224, 285.
    [19] Lou Z X, Wang H X, Zhu S, et al. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves[J]. Analytica Chimica Acta, 2012, 716: 28−33.
    [20] 和法涛, 刘光鹏, 等. 微波超声波组合提取猴头菇多糖工艺优化及其抗氧化活性[J]. 食品与生物技术学报,2019,38(1):74−82. [He F T, Liu G P, et al. Optimization of microwave ultrasonic extraction of Hericium erinaceus polysaccharide and its antioxidant activity[J]. Journal of Food and Biotechnology,2019,38(1):74−82. doi:  10.3969/j.issn.1673-1689.2019.01.012
    [21] 张媛媛, 张彬. 苯酚-硫酸法与蒽酮-硫酸法测定绿茶茶多糖的比较研究[J]. 食品科学,2016,37(4):158−163. [Zhang Y Y, Zhang B. A comparative study on the determination of green tea polysaccharides by phenol-sulfuric acid method and anthrone-sulfuric acid method[J]. Food Science,2016,37(4):158−163.
    [22] 于美汇, 赵鑫, 尹红力, 等. 碱提醇沉黑木耳多糖体外和体内降血脂功能[J]. 食品科学,2017,38(1):232−237. [Yu M H, Zhao X, Yin H L, et al. Alkaline extraction and alcohol precipitation of black fungus polysaccharides in vitro and in vivo hypolipidemic function[J]. Food Science,2017,38(1):232−237. doi:  10.7506/spkx1002-6630-201701039
    [23] 应瑞峰, 黄梅桂, 王耀松, 等. 超声波微波协同提取青钱柳超微粉多糖及活性研究[J]. 食品研究与开发,2017,38(23):32−37. [Ying R F, Huang M G, Wang Y S, et al. Study on extraction and activity of polysaccharides from Cyclocarya paliurus ultra-fine powder by ultrasonic and microwave irradiation[J]. Food Research and Development,2017,38(23):32−37. doi:  10.3969/j.issn.1005-6521.2017.23.006
    [24] 崔守富, 邵家威, 郝征红, 等. 超声波-微波联合提取绿芦笋中水溶性粗多糖的工艺优化[J]. 食品工业,2020,41(5):72−76. [Cui S F, Shao J W, Hao Z H, et al. Optimization of ultrasonic microwave extraction of water soluble crude polysaccharides from green asparagus[J]. Food Industry,2020,41(5):72−76.
    [25] 白婕, 郭凯, 沈银梅. Box-Behnken响应面法优化富硒平菇柄多糖提取工艺研究[J]. 经济林研究,2017,35(2):121−126. [Bai J, Guo K, Shen Y M. Optimization of extraction technology of polysaccharide from Pleurotus ostreatus stalk by Box Behnken response surface method[J]. Economic Forest Research,2017,35(2):121−126.
    [26] 曹小燕, 杨海涛. 微波-超声波协同辅助优化阳荷多糖提取工艺及抗氧化性分析[J]. 食品研究与开发,2020,41(18):68−74. [Cao X Y, Yang H T. Optimization of extraction process and antioxidant activity of polysaccharides from Schima superba by microwave-ultrasonic method[J]. Food Research and Development,2020,41(18):68−74.
    [27] 陈宇航, 岳凤丽, 张洁, 等. 超声微波协同提取豆渣中水溶性多糖的工艺优化[J]. 食品工业,2017,38(6):148−152. [Chen Y H, Yue F L, Zhang J, et al. Technology optimization of ultrasonic and microwave synergistic extraction of water-soluble polysaccharides from bean dregs[J]. Food Industry,2017,38(6):148−152.
    [28] Xu N, Sun Y H, Guo X L, et al. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica[J]. Journal of Food Processing & Preservation,2017,42(2):e13423.1−e13423.7.
    [29] 景永帅, 孙丽丛, 程文境, 等. 微波辅助法提取多糖的研究进展[J]. 食品与机械,2020,36(10):228−232. [Jing Y S, Sun L C, Cheng W J, et al. Research progress of microwave assisted extraction of polysaccharides[J]. Food and Machinery,2020,36(10):228−232.
    [30] Xu S Y, Chen X Q, Liu Y, et al. Ultrasonic/microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis[J]. International Journal of Biological Macromolecules, 2020, 152: 748−756.
    [31] 黄琼, 何燕萍. Box-Behnken响应面法优化超声波-微波协同提取玫瑰茄多糖工艺[J]. 福建农业学报,2018,33(12):1324−1329. [Huang Q, He Y P. Optimization of ultrasonic microwave synergistic extraction of polysaccharides from roselle by Box Behnken response surface method[J]. Fujian Journal of Agriculture,2018,33(12):1324−1329.
    [32] 胡凯, 黄惠华. 不同茶叶对胆酸盐的结合及其降血脂机理的研究[J]. 食品与发酵工业,2010,36(9):42−45. [Hu K, Huang H H. Study on the combination of different teas to cholate and the mechanism of lowering blood lipid[J]. Food and Fermentation Industries,2010,36(9):42−45.
    [33] 杨青松, 陈小玲, 高路, 等. 水溶性红雪茶多糖体外结合胆酸盐能力的分析[J]. 中国食品添加剂,2017(9):49−54. [Yang Q S, Chen X L, Gao L, et al. In vitro binding capacity of water soluble polysaccharides from Hongxue tea[J]. China Food Additive,2017(9):49−54. doi:  10.3969/j.issn.1006-2513.2017.09.001
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升