阿勒泰羊臀脂及其分提产物对小鼠结肠形态及盲肠内容物短链脂肪酸影响

朱明睿 于晨晨 徐艳丽 张莉 孙佳宁 邓香娟 王子荣

朱明睿,于晨晨,徐艳丽,等. 阿勒泰羊臀脂及其分提产物对小鼠结肠形态及盲肠内容物短链脂肪酸影响[J]. 食品工业科技,2021,42(20):367−373. doi:  10.13386/j.issn1002-0306.2021020224
引用本文: 朱明睿,于晨晨,徐艳丽,等. 阿勒泰羊臀脂及其分提产物对小鼠结肠形态及盲肠内容物短链脂肪酸影响[J]. 食品工业科技,2021,42(20):367−373. doi:  10.13386/j.issn1002-0306.2021020224
ZHU Mingrui, YU Chenchen, XU Yanli, et al. Altay Sheep (Ovis aries L.) Buttock Fat and Its Fractionation Products on Short-chain Fatty Acids in Mouse Colon Morphology and Cecal Contents[J]. Science and Technology of Food Industry, 2021, 42(20): 367−373. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020224
Citation: ZHU Mingrui, YU Chenchen, XU Yanli, et al. Altay Sheep (Ovis aries L.) Buttock Fat and Its Fractionation Products on Short-chain Fatty Acids in Mouse Colon Morphology and Cecal Contents[J]. Science and Technology of Food Industry, 2021, 42(20): 367−373. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020224

阿勒泰羊臀脂及其分提产物对小鼠结肠形态及盲肠内容物短链脂肪酸影响

doi: 10.13386/j.issn1002-0306.2021020224
基金项目: 新疆维吾尔自治区自然科学基金项目(2019D01A38)
详细信息
    作者简介:

    朱明睿(1993−),男,硕士研究生,研究方向:食品营养与安全,E-mail:763662768@qq.com

    通讯作者:

    王子荣(1963−),男,博士,教授,研究方向:食品营养与安全,E-mail:wangzirong212@126.com

  • 中图分类号: TS225.2

Altay Sheep (Ovis aries L.) Buttock Fat and Its Fractionation Products on Short-chain Fatty Acids in Mouse Colon Morphology and Cecal Contents

  • 摘要: 为研究阿勒泰羊臀脂及其溶剂法分提产物的营养特性,选取60只昆明雄性小鼠,随机分为5组,使用2 ℃分提产物(2 ℃组)、12 ℃分提产物(12 ℃组)、原脂(BF组)、菜籽油(RO组)和生理盐水(CK组)进行灌胃(1.5 mL/10 g),分别于第20和40 d处死小鼠并测量相关指标。结果表明:灌胃20 d后,除CK组外,各组小鼠盲肠中乙酸、丁酸和戊酸含量无显著性差异(P>0.05),BF组盲肠丙酸含量、2和12 ℃组盲肠异戊酸含量显著高于RO组(P<0.05),12 ℃和BF组小鼠结肠绒毛长度和结肠隐窝深度均显著低于RO组(P<0.05)。灌胃40 d后,2 ℃组盲肠丙酸、丁酸和戊酸及12 ℃组盲肠乙酸、丙酸和丁酸的含量显著高于RO组(P<0.05),12 ℃和BF组结肠隐窝深度和绒毛长度显著低于RO组(P<0.05)。说明在此摄入水平下,阿勒泰羊臀脂2 ℃分提产物比原脂和菜籽油更有利于维持小鼠盲肠短链脂肪酸含量的相对稳定,并且对于结肠损伤较小。
  • 图  1  阿勒泰羊臀脂及其分提产物对小鼠盲肠内容物总短链脂肪酸含量的影响

    Figure  1.  Effects of Altay sheep buttock fat and its extract on the content of total short chain fatty acids in cecum of mice

    注:不同小写字表示相同天数不同组数据差异显著(P<0.05);图2~图7同。

    图  2  阿勒泰羊臀脂及其分提产物对小鼠盲肠内容物乙酸含量的影响

    Figure  2.  Effects of Altay sheep buttock fat and its fractions on the content of acetic acid in the cecum of mice

    图  5  阿勒泰羊臀脂及其分提产物对小鼠盲肠内容物异戊酸含量的影响

    Figure  5.  Effects of Altay sheep buttock fat and its fractions on isovaleric acid content in the cecum of mice

    图  3  阿勒泰羊臀脂及其分提产物对小鼠盲肠内容物丙酸含量的影响

    Figure  3.  Effects of Altay sheep buttock fat and its fractions on the content of propionic acid in the cecum of mice

    图  4  阿勒泰羊臀脂及其分提产物对小鼠盲肠内容物丁酸含量的影响

    Figure  4.  Effects of Altay sheep buttock fat and its fractions on the content of butyric acid in the cecum of mice

    图  6  阿勒泰羊臀脂及其分提产物对小鼠盲肠内容物戊酸含量的影响

    Figure  6.  Effects of Altay sheep buttock fat and its fractions on the content of valeric acid in the cecum of mice

    图  7  阿勒泰羊臀脂及其分提产物对小鼠结肠隐窝深度的影响

    Figure  7.  Effects of Altay sheep buttock fat and its fractions on the depth of colonic crypts in mice

    图  8  阿勒泰羊臀脂及其分提产物对小鼠结肠绒毛长度的影响

    Figure  8.  Effects of Altay sheep buttock fat and its fractions on the length of mouse colon villus

    图  9  20 d饲养小鼠结肠形态学观察

    Figure  9.  Morphological observation of the colon of mice fed for 20 days

    图  10  40 d饲养小鼠结肠形态学观察

    Figure  10.  Morphological observation of the colon of mice fed for 40 days

    表  1  短链脂肪酸标准曲线方程

    Table  1.   Short-chain fatty acid standard curve equation

    回归方程决定系数(R2线性范围(mg/mL)
    乙酸y=533626x−17380.99970.1~20
    丙酸y=518157x−295490.99960.1~20
    丁酸y=472050x−201690.99990.1~20
    异戊酸y=340015x−216590.99970.1~20
    正戊酸y=400560x−184130.99980.1~20
    下载: 导出CSV
  • [1] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019: 276−278.

    National Bureau of Statistics of People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2019: 276−278.
    [2] 王金泉, 王肖燕, 叶青, 等. 阿勒泰大尾羊与小尾寒羊不同组织FTO基因的检测[J]. 动物医学进展,2013,34(12):84−88. [Wang J Q, Wang X Y, Ye Q, et al. Detection of FTO gene in different tissues of Altay big-tail sheep and small-tail Han sheep[J]. Progress in Veterinary Medicine,2013,34(12):84−88. doi:  10.3969/j.issn.1007-5038.2013.12.019
    [3] Li Y, Li Y B, Liu C J. Changes in lipid oxidation and fatty acids in altay sheep fat during a long time of low temperature storage[J]. J Oleo Sci,2017,66(4):321−327. doi:  10.5650/jos.ess16139
    [4] 李涛, 陈卫林, 王子荣, 等. 哈萨克羊不同部位脂肪特性的研究[J]. 中国油脂,2018,43(7):32−35, 40. [Li T, Cheng W L, Wang Z R, et al. Fat characteristics in different parts of Kazak sheep[J]. China Oils and Fats,2018,43(7):32−35, 40. doi:  10.3969/j.issn.1003-7969.2018.07.009
    [5] 刘丹, 何鑫, 王子荣, 等. 不同品种脂臀羊尾脂品质的比较分析[J]. 现代食品科技,2018,43(7):32−35, 40. [Liu D, He X, Wang Z R, et al. Comparative analysis of the quality of different varieties of fat buttocks[J]. Modern Food Science and Technology,2018,43(7):32−35, 40.
    [6] 何鑫, 刘丹, 李涛, 等. 不同提取方法对羊尾油品质的影响[J]. 肉类研究,2019,33(2):7−12. [He X, Liu D, Li T, et al. Effects of different extraction methods on the quality of sheep tail lipids[J]. Meat Research,2019,33(2):7−12. doi:  10.7506/rlyj1001-8123-20181129-222
    [7] 程谦伟, 张谦益, 孟陆丽, 等. 大豆油脂肪酸溶剂法分提研究[J]. 粮食与油脂,2010(1):16−18. [Cheng Q W, Zhang Q Y, Meng L L, et al. Solvent extraction of fatty acids from soybean oil[J]. Food and Oil,2010(1):16−18. doi:  10.3969/j.issn.1008-9578.2010.01.005
    [8] 张晓鹏, 孟宗, 李进伟, 等. 猪油溶剂法分提产物性质分析[J]. 中国油脂,2014,39(2):37−40. [Zhang X P, Meng Z, Li J W, et al. Property analysis of lard solvent extraction product[J]. China Oil,2014,39(2):37−40.
    [9] 沈继红, 刘发义, 石书河, 等. 溶剂分提法去除鱼油中高凝固脂的研究[J]. 食品科技,2001,1(1):39. [Shen J H, Liu F Y, Shi S H, et al. Study on removing high solidifying fat from fish oil by solvent fractionation[J]. Food Science and Technology,2001,1(1):39. doi:  10.3969/j.issn.1005-9989.2001.01.017
    [10] Trompette A, Gollwitzer E S, Adava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med,2014,20(2):159−166. doi:  10.1038/nm.3444
    [11] Den B G, Van E K, Groen A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res,2013,54(9):2325−2340. doi:  10.1194/jlr.R036012
    [12] 费嘉, 罗军涛, 章小英, 等. 短链脂肪酸在肠道菌群调节人体能量代谢中的作用[J]. 中华糖尿病杂志,2018,10(5):370−373. [Fei J, Luo J T, Zang X Y, et al. The role of short-chain fatty acids in the regulation of human energy metabolism by intestinal flora[J]. Chinese Journal of Diabetes,2018,10(5):370−373. doi:  10.3760/cma.j.issn.1674-5809.2018.05.014
    [13] Mathewson ND, Jenq R, Mathew AV, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease[J]. Nat Immunol,2016,17(10):505−513.
    [14] Serino M, Luche E, Gres S, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota[J]. Gut,2012,61(4):543−553. doi:  10.1136/gutjnl-2011-301012
    [15] 刘宇, 丁倩雯, 冉超, 等. 鱼虾肠道菌群代谢产物短链脂肪酸研究进展[J]. 生物技术通报,2020,36(2):58−64. [Liu Y, Ding Q W, Ran C, et al. Research progress of short chain fatty acids in intestinal microflora metabolites of fish and shrimp[J]. Biotechnology Bulletin,2020,36(2):58−64.
    [16] Arpaia N, Campbell C, Fan X Y, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature,2013,504(7480):451. doi:  10.1038/nature12726
    [17] Caesar R, Tremaroli V, Cani P D, et al. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling[J]. Cell Metab,2015,22(4):658−668. doi:  10.1016/j.cmet.2015.07.026
    [18] Schwiertz A, Taras D, Beijer S, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity,2010,18(1):190−195. doi:  10.1038/oby.2009.167
    [19] Wan Y, Wang F L, Yuan J H, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial[J]. Gut,2019,68(8):1417−1429.
    [20] Vinolo M A, Rodrigues H G, Nachbar R T, et al. Regulation of inflammation by short chain fatty acids[J]. Nutrients,2011,3(10):858−876. doi:  10.3390/nu3100858
    [21] 中国居民膳食指南(2016)[M]. 北京: 人民卫生出版社, 2016: 118.

    Dietary guidelines for Chinese (2016)[M]. Beijing: People’s Medical Publishing House, 2016: 118.
    [22] 陈和地, 任怡琳, 耿燕, 等. 基于超高效液相色谱法快速测定短链脂肪酸方法的建立[J]. 生物加工过程,2019,17(4):365−371. [Cheng H D, Ren Y L, Geng Y, et al. Analysis of short chain fatty acids by ultra-performance liquid chromatography[J]. Chinese Journal of Bioprocess Engineering,2019,17(4):365−371. doi:  10.3969/j.issn.1672-3678.2019.04.006
    [23] Faujan H N, Abdulamir A S, Fatimah A B, et al. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects[J]. Open Biochem J,2010,4:53−58. doi:  10.2174/1874091X01004010053
    [24] 赵仁山. 儿童生物样本中挥发性生化物质的检测及其应用[D]. 南京: 东南大学, 2017.

    Zhao R S. Detection and application of volatile biochemical substances in children’s biological samples[D]. Nanjing: Southeast University, 2017.
    [25] 李慧, 杨光勇, 刘茜明, 等. 黄连解毒汤对小鼠血清中Trp、Kyn、5-HT及粪便中短链脂肪酸代谢的影响[J]. 黑龙江畜牧兽医,2019,9:126−129. [Li H, Yang G Y, Liu Q M, et al. Effect of huanglian jiedu decoction on Trp, Kyn, 5-HT in serum and short-chain fatty acid metabolism in feces of mice[J]. Heilongjiang Animal Science and Veterinary Medicine,2019,9:126−129.
    [26] Vogt J A, Wolever T M S. Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon[J]. J Nutr, 2003, 133: 3145–3148.
    [27] Frost G, Sleeth M L, Arisoylu M S. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mech-anism[J]. Nat Commun, 2014, 5: 3611.
    [28] 任燕. 短链脂肪酸在SD大鼠肥胖模型中作用探讨[A]. 中国中西医结合学会肾脏疾病专业委员会. 中国中西医结合学会肾脏疾病专业委员会2018年学术年会论文摘要汇编[C]//中国中西医结合学会肾脏疾病专业委员会: 中国中西医结合学会, 2018: 1.

    Ren Y. The role of short-chain fatty acids in SD rat obesity model[A]. Professional Committee of Renal Diseases, Chinese Society of Integrative Medicine. Abstract compilation of the 2018 academic annual meeting of the Renal Disease Professional Committee of the Chinese Society of Integrative Medicine[C]// Professional Committee of Renal Diseases, Chinese Society of Integrative Medicine: China Association of Integrative Medicine, 2018: 1.
    [29] Grant D, Brinkworth, Manny N, et al. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations[J]. Br J Nutrition,2009,101:1493−1502. doi:  10.1017/S0007114508094658
    [30] Al-Lahham S H, Peppelenbosch M P, Roelofsen H, et al. Biological effects of propionic acid in humans; metabolism, poten-tial applications and underlying mechanisms[J]. Biochim BiophysActa,2010,1:1175−1183.
    [31] Kotzampassi K, Giamarellos-Bourboulis E J, Stavrou G. Obesity as a consequence of gut bacteria and diet interactions[J]. ISRN Obes,2014,5:651895.
    [32] Hong Y H, Nishimura Y, Hishikawa D, et al. Acetate and propionate short-chain fatty acids stimulate adipogenesis via GPCR43[J]. Endocrinology,2005,146(12):5092−5099. doi:  10.1210/en.2005-0545
    [33] 吴水芸. 高脂肥胖对肠道微生态、短链脂肪酸的影响[D]. 镇江: 江苏大学, 2016.

    Wu S Y. The effects of obesity on intestinal micro-ecology and short-chain fatty acids[D]. Zhenjiang: Jiangsu University, 2016.
    [34] 李贺. 不同来源脂肪对大鼠肠道微生物的影响研究[D]. 南京: 南京农业大学, 2017.

    Li H. Effect of different dietary fats on gut microbiota[D]. Nanjing: Nanjing Agricultural University, 2017.
    [35] Susan E P, Sylvia H D, Deorgina L H, et al. The microbiology of butyrate formation in the human colon[J]. FEMS Microbiol Lett,2002,217(2):133−139. doi:  10.1111/j.1574-6968.2002.tb11467.x
    [36] Krautkramer K A, Kreznar J H, Romano K A, et al. Diet–mi-crobiota interactions mediate global epigenetic programming inmultiple host tissues[J]. Mol Cell,2016,64(5):982−992. doi:  10.1016/j.molcel.2016.10.025
    [37] Greta J, Jie X, Göran M, et al. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects[J]. PloS One,2013,8(11):e80476. doi:  10.1371/journal.pone.0080476
    [38] Kong C, Yuan R. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet[J]. Nutrition,2019,60:175−184. doi:  10.1016/j.nut.2018.10.002
    [39] Ye Z, Cao C, Li Q, et al. Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats[J]. Food Res Int,2020,132:109117. doi:  10.1016/j.foodres.2020.109117
    [40] 黄玉军, 姚瑶, 周帆, 等. 间歇益生菌干预对高脂血症大鼠粪便短链脂肪酸含量的影响[J]. 现代食品科技,2019,35(12):1−7. [Huang Y J, Yao Y, Zhou F, et al. Effect of intermittent intervention of probiotics on short-chain fatty acid content in feces of rats with hyperlipidemia[J]. Modern Food Science & Technology,2019,35(12):1−7.
    [41] Ji Y, Ma N, Zhang J, et al. Dietary intake of mixture coarse cereals prevents obesity by altering the gut microbiota in high-fat diet fed mice[J]. Food Chem Toxicol,2021,147:111901. doi:  10.1016/j.fct.2020.111901
    [42] Araujo J R, Tomas J, Brenner C, et al. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity[J]. Biochimie,2017,141:97−106. doi:  10.1016/j.biochi.2017.05.019
    [43] 卫旭彪, 张璐璐, 马广, 等. 酵母菌对猪肠道绒毛、隐窝及菌群的影响[J]. 饲料工业,2016,37(4):61−64. [Wei B X, Zhang L L, Ma G, et al. Effects of yeasts on intestinal villus, crypt and flora in pigs[J]. Feed Industry,2016,37(4):61−64.
    [44] 叶展. 典型膳食油脂胃肠道消化吸收特性及其对肠道健康的影响研究[D]. 无锡: 江南大学, 2020.

    Ye Z. Studies on characteristics of typical dietary oil gastrointestinal digestion and absorption, and their influences on gut health[D]. Wuxi: Jiangnan University, 2020.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 网络出版日期:  2021-09-13

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。