紫外分光光度法与荧光光谱法探究呈味核苷酸与EGCG及其蛋白络合物的相互作用

张月 喻雪莲 田月月 张丽霞

张月,喻雪莲,田月月,等. 紫外分光光度法与荧光光谱法探究呈味核苷酸与EGCG及其蛋白络合物的相互作用[J]. 食品工业科技,2021,42(23):73−80. doi:  10.13386/j.issn1002-0306.2021020133
引用本文: 张月,喻雪莲,田月月,等. 紫外分光光度法与荧光光谱法探究呈味核苷酸与EGCG及其蛋白络合物的相互作用[J]. 食品工业科技,2021,42(23):73−80. doi:  10.13386/j.issn1002-0306.2021020133
ZHANG Yue, YU Xuelian, TIAN Yueyue, et al. Interaction of Flavor Nucleotides with EGCG and Their Protein Complexes by UV Absorption Spectrometry and Fluorescence Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(23): 73−80. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020133
Citation: ZHANG Yue, YU Xuelian, TIAN Yueyue, et al. Interaction of Flavor Nucleotides with EGCG and Their Protein Complexes by UV Absorption Spectrometry and Fluorescence Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(23): 73−80. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020133

紫外分光光度法与荧光光谱法探究呈味核苷酸与EGCG及其蛋白络合物的相互作用

doi: 10.13386/j.issn1002-0306.2021020133
基金项目: 山东省现代农业产业技术体系创新团队资助项目(SDAIT-19-05);山东省“双一流”奖补资金资助(SYL2017YY03)
详细信息
    作者简介:

    张月(1995−),女,硕士研究生,研究方向:茶叶加工品质控制,E-mail:17863805205@163.com

    通讯作者:

    张丽霞(1965−),女,博士,教授,研究方向:茶叶生物化学,E-mail:lxzhang@sdau.edu.cn

  • 中图分类号: S571.1

Interaction of Flavor Nucleotides with EGCG and Their Protein Complexes by UV Absorption Spectrometry and Fluorescence Spectrometry

  • 摘要: 为了探究IMP、GMP是否与EGCG及其蛋白络合物发生相互作用从而影响呈味特性,利用紫外分光光度法和荧光光谱法测定光谱的变化,结果表明: IMP、GMP与EGCG会发生相互作用,改变EGCG的光谱特性,且只存在一种结合方式,GMP与EGCG相互作用的效应强于IMP与EGCG的相互作用,两种呈味核苷酸1:1混合时对EGCG影响最大;IMP、GMP均不单独与BSA发生相互作用,但两者同时存在时会对BSA产生静态荧光淬灭,结合常数为0.6634,结合位点数为0.88;与EGCG蛋白络合物相互作用中,GMP单独存在时只与EGCG反应,IMP、GMP同时存在时以与蛋白的相互作用为主,结合常数为1.1054,结合位点数为1.49。此研究可更清晰地了解茶汤的呈味机制,为茶叶品质提高及茶饮料风味改善提供理论基础。
  • 图  1  三种滋味物质的紫外吸收光谱

    Figure  1.  Ultraviolet absorption spectra of three flavor substances

    注: a~j:表示滋味物质的浓度为: 0.4×10−5、0.8×10−5、1.2×10−5、1.6×10−5、2.0×10−5、2.4×10−5、2.8×10−5、3.2×10−5、3.6×10−5 和4.0×10−5 mol/L。

    图  2  EGCG与呈味核苷酸相互作用的紫外吸收光谱及理论拟合图

    Figure  2.  Ultraviolet absorption spectrum and theoretical fitting diagram of the interaction between EGCG and taste nucleotide

    注: EGCG浓度为2.0×10−5 mol/L ;a~j:表示呈味核苷酸的浓度为:0.4×10−5、0.8×10−5、1.2×10−5、1.6×10−5、2.0×10−5、2.4×10−5、2.8×10−5、3.2×10−5、3.6×10−5和4.0×10−5 mol/L。

    图  3  1/(A-A0)与1/C呈味核苷酸的线性关系

    Figure  3.  Linear relationship between 1/(A-A0) and 1/C as flavor nucleotides

    图  4  BSA与呈味核苷酸相互作用的紫外吸收光谱图

    Figure  4.  Ultraviolet absorption spectrum of the interaction between BSA and taste nucleotide

    注: BSA浓度为2.0×10−6 mol/L ;a~k:表示呈味核苷酸的浓度为: 0,0.4×10−5、0.8×10−5、1.2×10−5、1.6×10−5、2.0×10−5、2.4×10−5、2.8×10−5、3.2×10−5、3.6×10−5和4.0×10−5 mol/L。

    图  5  EGCG-BSA络合物与呈味核苷酸相互作用的紫外吸收光谱图

    Figure  5.  Ultraviolet absorption spectrum of the interaction between EGCG-BSA complex and taste nucleotide

    注: EGCG浓度为2.0×10−5 mol/L ;BSA浓度为2.0×10−6 mol/L ;a~k:表示呈味核苷酸的浓度为: 0、0.4×10−5、0.8×10−5、1.2×10−5、1.6×10−5、2.0×10−5、2.4×10−5、2.8×10−5、3.2×10−5、3.6×10−5和4.0×10−5 mol/L。

    图  6  各滋味物质与BSA相互作用的荧光发射图

    Figure  6.  Ultraviolet absorption spectrum of the interaction between EGCG-BSA complex and taste nucleotide

    注: EGCG浓度为2.0×10−5 mol/L ;BSA浓度为2.0×10−6 mol/L ;a~k:表示呈味核苷酸的浓度为: 0、0.4×10−5、0.8×10−5、1.2×10−5、1.6×10−5、2.0×10−5、2.4×10−5、2.8×10−5、3.2×10−5、3.6×10−5和4.0×10−5 mol/L。

    图  7  呈味核苷酸对BSA(上)及EGCG蛋白络合物(下)荧光淬灭的Stern-Volmer图

    Figure  7.  Stern-Volmer plot of fluorescence quenching of flavoring nucleotides on BSA (up) and EGCG protein complex (down)

    图  8  呈味核苷酸对BSA及EGCG蛋白络合物荧光猝灭的Lineweaver-Burk图

    Figure  8.  Lineweaver-Burk diagram of fluorescence quenching of BSA and EGCG protein complexes by flavored nucleotides

    表  1  结合常数KA及结合位点数n

    Table  1.   Binding constant KA and number of binding sites n

    类型KA/(L·mol−1)nR2
    BSA+IMP+GMP0.66388±0.03620.8793±0.08600.97869
    BSA+EGCG+IMP+GMP1.10536±0.07111.49316±0.03380.97564
    下载: 导出CSV
  • [1] 邱伟强, 谢晶, 陈舜胜, 等. 虾类冷藏期间ATP关联产物含量的变化及其降解途径的研究[J]. 现代食品科技,2015,31(10):103−108. [QIU W Q, XIE J, CHEN S S, et al. Changes of ATP-related compounds contents and its degradation pathways in shrimps during chilled storage[J]. Modern Food Science and Technology,2015,31(10):103−108.
    [2] 于文清, 彭艳芳, 许迎迎, 等. 五种野生食用菌干品营养及鲜味成分分析和评价[J]. 天然产物研究与开发,2015,27(2):271−276. [YU W Q, PENG Y F, XU Y Y, et al. Analysis and evaluation of nutritional and flavor components of five wild dried edible fungi[J]. Natural Product Research and Development,2015,27(2):271−276.
    [3] FUKE S, UEDA Y. Interactions between umami and other flavor characteristics[J]. Trends in Food Science & Technology,1996,7(12):407−411.
    [4] KANAKIS C D, HASNI I, BOURASSA P, et al. Milk β -lactoglobulin complexes with tea polyphenols[J]. Food Chemistry,2011,127(3):1046−1055. doi:  10.1016/j.foodchem.2011.01.079
    [5] NICOLA J B, TERENCE H L, EDWIN H, et al. Multiple Interactions between polyphenols and a salivary proline-rich protein[J]. Complexation and Precipitation Biochemistry,1997,36(18):5566−5577.
    [6] 宋亚赛. 绿茶苦涩味的化学成分及其相互作用研究[D]. 合肥: 安徽农业大学, 2016.

    SONG Y S, Analysis on chemical components of bitterness and astringency in green tea & interation between taste-active components[D]. Hefei: Anhui Agricultural University, 2016.
    [7] 岳翠男. 绿茶滋味物质研究及审评参考物模型的建立[D]. 重庆: 西南大学, 2017.

    YUE C N, Establishment of reference material model of green tea based on its taste material research[D]. Chongqing: Southwestern University, 2017.
    [8] 张春花, 单治国, 满红平, 等. 对相同鲜叶加工的不同类茶品化学成分含量的差异性研究[J]. 现代园艺,2020,43(9):22−24. [ZHANG C H, SHAN Z G, MAN H P, et al. Study on the difference of chemical composition content of different tea products processed from the same fresh leaves[J]. Xiandai Horticulture,2020,43(9):22−24. doi:  10.3969/j.issn.1006-4958.2020.09.010
    [9] YANG C, HU Z, LU M, et al. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea[J]. Food Research International,2018,106:909. doi:  10.1016/j.foodres.2018.01.069
    [10] 陈翔, 田月月, 张丽霞. 基于亲水相互作用液相色谱-三重四极杆质谱法研究白茶萎凋过程中代谢物的变化[J]. 茶叶科学,2020,40(2):238−249. [CHEN X, TIAN Y Y, ZHANG L X. The changes of metabolites during the withering process of white tea based on HILIC LC-QqQ MS method[J]. Journal of Tea Science,2020,40(2):238−249. doi:  10.3969/j.issn.1000-369X.2020.02.010
    [11] PRIYADARSHINI C, ABHI P, BHATTACHARYYA D K, et al. Quality appraisal of Labeo rohita Roe protein concentrate and characterization of the roe protein concentrate-based extruded munchies[J]. Aquatic Food Product Technology,2020,29(9):871−885. doi:  10.1080/10498850.2020.1818017
    [12] BEHRENS M, MEYERHOF W, HELLFRITSCH C, et al. Sweet and umami taste: Natural products, their chemosensory targets, and beyond[J]. Chemistry of Taste,2011,50:2220−2242.
    [13] 王珂雯, 廖小军, 徐贞贞. 多酚-蛋白质相互作用分析技术研究进展[J]. 食品工业科技,2021,42(14):371−379. [WANG K W, LIAO X J, XU Z Z. Advances in analytical techniques of polyphenol-protein interaction[J]. Modern Food Science and Technology,2021,42(14):371−379.
    [14] 孟丽艳, 屈凌波, 杨冉, 等. 紫外吸收光谱和荧光光谱法研究大黄酚与牛血清白蛋白相互作用机制[J]. 理化检验(化学分册),2009,45(10):1169−1173. [MENG L Y, QU L B, YANG R, et al. Study on the interaction mechanism between chrysophanol and bovine serum albumin by ultraviolet absorption spectroscopy and fluorescence spectroscopy[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2009,45(10):1169−1173.
    [15] JOSEPH J S. Drug-protein interactions: Two-site binding of heterocyclic ligands to a monomeric hemoglobin[J]. Inorganic Biochemistry,1996,62(3):155−169. doi:  10.1016/0162-0134(95)00144-1
    [16] HUANG R, VIVEKANANDAN S, BRENDER J R, et al. NMR Characterization of monomeric and oligomeric conformations of human calcitonin and its interaction with EGCG[J]. Molecular Biology,2012,416(1):108−120. doi:  10.1016/j.jmb.2011.12.023
    [17] 赵钜阳, 姚恒喆, 石长波. 多酚与蛋白质相互作用及其对蛋白质影响[J]. 食品与生物技术学报,2020,39(12):14−20. [ZHAO J Y, YAO H J, SHI C B. The interaction between polyphenols and proteins and their effects on proteins[J]. Journal of Food Science and Biotechnology,2020,39(12):14−20. doi:  10.3969/j.issn.1673-1689.2020.12.003
    [18] SUI X, SUN H, QI B, et al. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions[J]. Food Chemistry,2018,245:871−878. doi:  10.1016/j.foodchem.2017.11.090
    [19] 姚其凤, 吴正奇, 陈小强, 等. 茶多酚-蛋白质相互作用的研究进展[J]. 食品工业科技,2019,40(8):337−342. [YAO Q F, WU Z Q, CHEN X Q, et al. Research progress on tea polyphenol-protein interaction[J]. Science and Technology of Food Industry,2019,40(8):337−342.
    [20] 王进. 绿茶中EGCG提取纯化方法及其与牛血清蛋白相互作用的研究[D]. 泰安: 山东农业大学, 2009.

    WANG J. Purification of EGCG from green tea and its interaction with bovine serum albumin[D]. Tai’an: Shandong Agricultural University, 2009.
    [21] LI S, YAO D, BIAN H, et al. Interaction between plumbagin and human serum albumin by fluorescence spectroscopy[J]. Journal of Solution Chemistry,2011,40(4):709−718. doi:  10.1007/s10953-011-9666-6
    [22] 张冰卫, 李博, 夏文水, 等. 用荧光光谱法研究分子间结合常数和结合位点数时的公式选择[J]. 药学进展,2011,35:296−303. [ZHANG B W, LI B, XIA W B, et al. Selection of models in the calculation of binding constants in the study of interaction between molecules by fluorescence spectroscopy[J]. Progress in Pharmaceutical Sciences,2011,35:296−303.
    [23] ZHANG H, HUANG X, ZHANG M. Spectral diagnostics of the interaction between pyridoxine hydrochloride and bovine serum albumin in vitro[J]. Molecular Biology Reports,2008,35(4):699−705. doi:  10.1007/s11033-007-9143-x
    [24] 丁奇. 鸡汤及鸡肉酶解液中鲜味成分的测定与对比分析[D]. 北京: 北京工商大学, 2017.

    DING Q. Determination and analysis of umami components from chicken soup and chicken enzymatic hydrolysate[D]. Beijing: Beijing Technology and Business University, 2017.
    [25] 王婧. 多酚类化合物与牛血清蛋白相互作用的研究[D]. 杭州: 浙江工业大学, 2013.

    WANG J. The study of the interaction of polyphenolic compounds with bovine serum protein[D]. Hangzhou: Zhejiang University of Technology, 2013.
    [26] 金孝芳, 罗正飞, 童华荣. 绿茶茶汤中主要滋味成分及滋味定量描述分析的研究[J]. 食品工业科技,2012,33(7):343−346. [JIN X F, LUO Z F, TONG H R. Study on main taste compounds and quantitative descriptive analysis of taste in green tea infusion[J]. Science and Technology of Food Industry,2012,33(7):343−346.
    [27] YAMAGUCHI S, NINOMIYA K. Umami and food palatability[J]. Journal of Nutrition,2000,130(4):921−926. doi:  10.1093/jn/130.4.921S
    [28] 赵晓雪, 郭明, 王燕. 荧光光谱法及物理模建分析小檗淫羊藿甙与清蛋白的分子间作用[J]. 光谱学与光谱分析,2018,38(11):3420−3427. [ZHAO X X, GUO M, WANG Y. Study on the intermolecular interaction of icarrin with human serum albumin based on fluorescence spectrometry and physical modeling[J]. Spectroscopy and Spectral Analysis,2018,38(11):3420−3427.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  4
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-20
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升