咖啡酸对CCl4诱导BRL大鼠肝细胞损伤的保护作用

洪玥 陈友霞 刘珍珍 林琳 张天阳 高春燕

洪玥,陈友霞,刘珍珍,等. 咖啡酸对CCl4诱导BRL大鼠肝细胞损伤的保护作用[J]. 食品工业科技,2021,42(23):356−361. doi:  10.13386/j.issn1002-0306.2021020121
引用本文: 洪玥,陈友霞,刘珍珍,等. 咖啡酸对CCl4诱导BRL大鼠肝细胞损伤的保护作用[J]. 食品工业科技,2021,42(23):356−361. doi:  10.13386/j.issn1002-0306.2021020121
HONG Yue, CHEN Youxia, LIU Zhenzhen, et al. Protective Effect of Caffeic Acid on CCl4-Induced Injury of BRL Hepatocyte[J]. Science and Technology of Food Industry, 2021, 42(23): 356−361. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020121
Citation: HONG Yue, CHEN Youxia, LIU Zhenzhen, et al. Protective Effect of Caffeic Acid on CCl4-Induced Injury of BRL Hepatocyte[J]. Science and Technology of Food Industry, 2021, 42(23): 356−361. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020121

咖啡酸对CCl4诱导BRL大鼠肝细胞损伤的保护作用

doi: 10.13386/j.issn1002-0306.2021020121
基金项目: 国家自然科学基金项目(81660553,81960598);云南省教育厅科学研究基金项目(2019Y0257);高原特色食品资源开发与利用创新团队(ZKPY2019310)。
详细信息
    作者简介:

    洪玥(1994−),女,硕士,研究方向:营养因素与慢性疾病控制,E-mail:835593660@qq.com

    陈友霞(1993−),女,硕士,研究方向:营养因素与慢性疾病控制,E-mail:cyx079303@163.com

    通讯作者:

    高春燕(1981−),女,博士,教授,研究方向:植物源性食品资源开发与利用,E-mail:gcyxixi@163.com

  • 中图分类号: TS201.4

Protective Effect of Caffeic Acid on CCl4-Induced Injury of BRL Hepatocyte

  • 摘要: 采用体外四氯化碳(carbon tetrachloride,CCl4)诱导BRL大鼠肝细胞损伤模型,研究咖啡酸(caffeic acid,CA)对CCl4诱导BRL大鼠肝细胞损伤的保护作用。实验分为对照组、CCl4模型组(100 mmol/L CCl4 损伤3 h)和CA干预组(含0.2、0.4和0.8 mg/mL CA的DMEM溶液预处理4 h,再行CCl4暴露3 h),采用全自动生化分析仪检测天冬氨酸氨基转移酶(aspartate aminotransferase,AST)、丙氨酸氨基转移酶(alanine aminotransferase,ALT)和乳酸脱氢酶(lactate dehydrogenase,LDH)活力,试剂盒测定胞内活性氧(reactive oxygen species,ROS)、细胞质中细胞色素C(cytochrome C,Cyt c)和8-羟基脱氧鸟苷(8-hydroxydeoxyguanosine,8-OHdG)水平, qRT-PCR检测核因子E2相关因子2(nuclearfactor erythroid-2-related factor 2,Nrf2)、谷胱甘肽还原酶(glutathione reductase,GSR)、醌氧化还原酶1(quinine oxidoreductase,NQO1)和超氧化物歧化酶(superoxide dismutase,SOD)的表达水平。结果显示,CA对CCl4所致细胞培养液中AST、ALT和LDH活力以及胞内ROS、细胞质中Cyt c 和8-OHdG水平的异常升高均具有显著的抑制作用(P<0.05);与对照组相比,模型组细胞中Nrf2、GSRNQO1和SOD基因的mRNA表达水平无显著差异(P>0.05),而CA干预组中各检测基因的mRNA表达水平显著升高(P<0.05),且具有剂量依赖效应。结果表明,CCl4暴露可使BRL大鼠肝细胞发生氧化应激,而CA可激活Nrf2/ARE信号通路、上调抗氧化基因的mRNA水平,从而有效抑制CCl4对肝细胞的损伤。
  • 图  1  咖啡酸对CCl4损伤BRL大鼠肝细胞胞内ROS水平的影响 (200×)

    Figure  1.  Effect of caffeic acid on intracellular ROS levels of CCl4-injured BRL hepatocyte (200 ×)

    注:A,对照组;B,模型组;C、D、E分别是0.2、0.4和0.8 mg/mL的咖啡酸处理组。

    图  2  咖啡酸对CCl4损伤BRL大鼠肝细胞胞内ROS水平的影响

    Figure  2.  Effect of caffeic acid on intracellular ROS levels of CCl4-injured BRL hepatocyte

    注:与对照组相比,#P<0.05,##P<0.01;与模型组相比,*P<0.05,**P<0.01;图3~图5同。

    图  3  咖啡酸对CCl4损伤BRL大鼠肝细胞细胞质中Cyt c水平的影响

    Figure  3.  Effect of caffeic acid on the cytoplasm Cyt c level of CCl4-injured BRL hepatocyte

    图  4  咖啡酸对CCl4损伤BRL大鼠肝细胞细胞质中8-OHdG含量的影响

    Figure  4.  Effect of caffeic acid on cytoplasm 8-OHdG content of CCl4-injured BRL hepatocyte

    图  5  咖啡酸对CCl4损伤BRL大鼠肝细胞Nrf2、GSR、NQO1和SOD基因mRNA水平的影响

    Figure  5.  Effect of caffeic acid on mRNA levels of Nrf2, GSR, NQO1 and SOD in CCl4-injured BRL hepatocyte

    表  1  qRT-PCR 引物序列

    Table  1.   qRT-PCR primer sequences

    基因Primer名称引物序列 (5' → 3')产物大小(bp)
    β-actinac615FGAGGGAAATCGTGCGTGAC212
    ac827RTCATGGATGCCACAGGATT
    Nrf2Nr1305FAGACAAACATTCAAGCCGATTA204
    Nr1509RAGCGGCAACTTTATTCTTCC
    GSRG786FCGATGTCTGTGGGAAAGCA129
    G915RGCTGAAGACCACGGTAGGG
    NQO1NQ452FGCAGCGGCTCCATGTACTCT202
    NQ654RCTCCTCCCAGACAGTCTCCA
    SODS219FCGGTCCAGCGGATGAAGAG174
    S393RTCCACCTTTGCCCAAGTCA
    下载: 导出CSV

    表  2  咖啡酸对CCl4损伤BRL大鼠肝细胞培养液上清中AST、ALT和LDH活力的影响

    Table  2.   Effect of caffeic acid on the AST, ALT and LDH activities in the supernatant of BRL hepatocyte injured by CC14

    组别浓度(mg/mL)AST(U/L)ALT(U/L)LDH(U/L)
    对照组5.17±0.751.67±0.5281.83±2.71
    CCl4模型组19.50±1.05##3.33±0.52##164.33±2.42##
    0.215.67±1.212.83±0.41141.17±1.72
    CA干预组0.413.83±0.75*2.33±0.52*135.33±2.16*
     0.812.50±1.05**1.83±0.41**118.33±2.66 **
    注:“−”表示以不含咖啡酸的完全培养液处理;与对照组相比,# P<0.05,## P<0.01;与模型组相比,* P<0.05,** P<0.01。
    下载: 导出CSV
  • [1] YE D, ZHANG T B, LOU G H. Role of mir-223 in the pathophysiology of liver diseases[J]. Experimental & Molecular Medicine,2018,50(9):128.
    [2] 张君, 吴凤鸣, 郭凯, 等. 水飞蓟素对于急性肝损伤修复的抗氧化作用研究[J]. 江西畜牧兽医杂志,2019,189(1):19−22. [ZHANG J, WU F M, GUO K, et al. Antioxidant effects of silymarin on the repair of acute liver injury[J]. Jiangxi Journal of Animal Husbandry & Veterinary Medicine,2019,189(1):19−22.
    [3] DAWID P, AGNIESZKA W, EWA H, et al. Liver failure impairs the intrahepatic elimination of interleukin-6, tumor necrosis factor-alpha, hepatocyte growth factor, and transforming growth factor-beta[J]. BioMed Research International,2015,2015:1−7.
    [4] 陈美岑, 吕黄华, 农小欣, 等. 激活Nrf2/ARE信号通路减轻肝损伤的中药研究进展[J]. 世界科学技术-中医药现代化,2020,22(4):1102−1107. [CHEN M C, LV H H, NONG X X, et al. Research progress in traditional chinese medicine for activating Nrf2/ARE signaling pathway to reduce liver injury[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2020,22(4):1102−1107.
    [5] 梁丽, 毕倩, 董金材, 等. 具有保肝作用的天然药物开发进展[J]. 生物资源,2018,40(2):148−158. [LIANG L, BI Q, DONG J C, et al. Progress on the development of natural medicines with hepatoprotective effects[J]. Biotic Resources,2018,40(2):148−158.
    [6] WANG Y, HAN T, XUE L M, et al. Hepatotoxicity of kaurene glycosides from Xanthium strumarium L. fruits in mice[J]. Pharmazie,2011,66(6):445−449.
    [7] LUEDDE T, KAPLOWITZ N, SCHWABE R F. Cell death and cell death responses in liver disease: Mechanisms and clinical relevance[J]. Gastroenterology,2014,147(4):765−783.
    [8] 梁佩诗, 周旺, 江振洲, 等. 补骨脂素通过延缓肝再生加重四氯化碳所致肝毒性的机制研究[J]. 中国中药杂志,2020,45(12):2916−2923. [LIANG P S, ZHOU W, JIANG Z Z, et al. Mechanism of psoralen in aggravating hepatotoxicity induced by CCl4 by delaying liver regeneration[J]. China Journal of Chinese Materia Medica,2020,45(12):2916−2923.
    [9] 兰星, 李钊文. 不同产地海金沙藤咖啡酸含量研究[J]. 大众科技,2020,22(1):29−31. [LAN X, LI Z W. Study on the content of caffeic acid in lygodiumjaponicum from different areas[J]. Popular Science & Technology,2020,22(1):29−31.
    [10] DZIEDZIC A, KUBINA R, KABALA-DZIK A, et al. Caffeic acid reduces the viability and migration rate of oral carcinoma cells(scc-25) exposed to low concentrations of ethanol[J]. International Journal of Molecular Sciences,2014,15(10):18725−18741.
    [11] HOOSHMAND S, KUMAR A, ZHANG J Y, et al. Evidence for anti-inflammatory and antioxidative properties of dried plum polyphenols in macrophage raw 264.7 cells[J]. Food & Function,2015,6(5):1719−1725.
    [12] 于福浩, 娄在祥, 王洪新等. 咖啡酸对铜绿假单胞菌群体感应的抑制及毒力因子降低的研究[J]. 食品与生物技术学报,2019,38(6):56−63. [YU F H, LOU Z X, WANG H X, et al. Effect of caffeic acid on quorum sensing and virulence factors of Pseudomonas aeruginosa[J]. Journal of Food Science and Biotechnology,2019,38(6):56−63.
    [13] 范金波, 蔡茜彤, 冯叙桥, 等. 咖啡酸体外抗氧化活性的研究[J]. 中国食品学报,2015,15(3):65−73. [FAN J B, CAI Q T, FENG X Q, et al. Studies on the antioxidant activity in vitro of caffeic acid[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(3):65−73.
    [14] 韩晶岩. 咖啡酸抑制肝微循环障碍和肝损伤的作用机制[J]. 中国病理生理杂志,2015,31(10):1873. [HAN J Y. The mechanism of caffeic acid in inhibiting hepatic microcirculation disturbance and liver injury[J]. Chinese Journal of Pathophysiology,2015,31(10):1873.
    [15] CHEN D, TAVANA O. ARF-NRF2: A new checkpoint for oxidative stress responses?[J]. Molecular & Cellular Oncology,2018,5(3).
    [16] XU D, XU M, JEONG S, et al. The role of Nrf2 in liver disease: Novel molecular mechanisms and therapeutic approaches[J]. Frontiers in Pharmacology,2019,9:1428.
    [17] 曹若琼. N-乙酰半胱氨酸与抗结核药物协同功能的研究[D]. 保定: 河北大学, 2018.

    CAO R Q. Synergistic effects of nac and anti-TB antibiotics [D]. Baoding: Hebei University, 2018.
    [18] 许炳华, 徐健, 鲍传庆, 等. 热休克凋亡和冻融裂解人胃癌细胞株抗原负载树突状细胞体外刺激细胞毒T细胞活性比较[J]. 现代肿瘤医学,2011,19(6):1093−1096. [XU B H, XU J, BAO C Q, et al. Comparison of cytotoxic T lymphocyte activity stimulated in vitro by dendritic cells loaded with heat-shocked and freeze-thawed gastric cancer cell strain[J]. Journal of Modern Oncology,2011,19(6):1093−1096.
    [19] 薛婵. 齐墩果酸经CoQ10/UCP2/ROS/Cyto-C通路抑制大鼠血管平滑肌细胞增殖[D]. 青岛: 青岛大学, 2017.

    XUE C. Oleanolic acid regulats the cells proliferation of rat artery vascular smooth muscle via CoQ10/UCP2/ROS/Cyto-C signaling pathways[D]. Qingdao: Qingdao University, 2017.
    [20] 刘凤超. 抑制PIK3C3和PI3K通路对肝癌干细胞自我更新的影响及机制研究[D]. 重庆: 重庆医科大学, 2019.

    LIU F C. Study on the effect and mechanism of inhibition of PIK3C3 and PI3K pathways on the self-renewal of liver cancer stem cells [D]. Chongqing: Chongqing Medical University, 2019.
    [21] 吕丽. 基于PI3K/Akt/NF-κb信号通路槲皮素抗动脉粥样硬化作用研究[D]. 长春: 吉林大学, 2017.

    LV L. Protective effects of quercetin on atherosclerosis via PI3K/Akt/NF-κb signaling pathway[D]. Changchun: Jilin University, 2017.
    [22] 张倩. 金丝桃苷对Nrf2-ARE途径的影响及其对肝细胞氧化应激损伤的保护作用[D]. 重庆: 西南大学, 2014.

    ZHANG Q. Effect of hyperoside on Nrf2-ARE pathway and its protective effect on oxidative stress-induced L02 cell damage[D]. Chongqing: Southwest University, 2014.
    [23] 龚瑜林, 王玉鑫, 赵振群, 等. 细胞色素C与Caspase-9在激素性股骨头缺血坏死中的作用[J]. 中国组织工程研究,2018,22(16):2526−2531. [GONG Y L, WANG Y X, ZHAO Z Q, et al. Roles of cytochrome C and caspase-9 in steroid-induced avascular necrosis of the femoral head[J]. Chinese Journal of Tissue Engineering Research,2018,22(16):2526−2531.
    [24] CHATTERJEE S, KUNDU S, BHATTACHARYYA A. Mechanism of cadmium induced apoptosis in the immunocyte[J]. Toxicology Letters,2008,177(2):83−89.
    [25] 邱月, 安莉莎, 曹小芳, 等. 8-羟基脱氧鸟苷高特异性ELISA检测方法的建立及其用于妊娠期糖尿病的对比研究[J]. 中国计划生育学杂志,2019,27(7):851−853,857. [QIU Y, AN L S, CAO X F, et al. The establishment of 8 hydroxydeoxyguanosine detection by a high specificity ELISA assay, and the comparative study of its used in gestational diabetes mellitus[J]. Chinese Journal of Family Planning,2019,27(7):851−853,857.
    [26] 唐毅, 刘丽丽, 唐耘天. 8-羟基脱氧鸟苷在原发性肝癌中的研究现状[J]. 中国临床新医学,2013,6(3):273−276. [TANG Y, LIU L L, TANG Y T. Advances of 8-hydroxy-2’-deoxyguanosine expression in primary hepatocellular carcinoma[J]. Chinese Journal of New Clinical Medicine,2013,6(3):273−276.
    [27] 覃斐章, 董敏, 秦秋华等. 玉郎伞查尔酮激活Nrf2/ARE信号通路减轻缺氧/复氧所致的H9c2细胞凋亡及氧化应激损伤[J]. 天然产物研究与开发,2020,32(6):1038−1044. [TAN F Z, DONG M, QIN Q H, et al. 17-Methoxyl-7-hydroxyl-benzofuran chalcone activates Nrf2/ARE pathway to protect H9c2 cells against apoptosis and oxidative stress induced by hypoxia/reoxygenation[J]. Natural Product Research and Development,2020,32(6):1038−1044.
    [28] DESHMUKH P, UNNI S, KRISHNAPPA G. The Keap1-Nrf2 pathway: Promising therapeutic target to counteract ros-mediated damage in cancers and neurodegenerative diseases[J]. Biophy Rev,2017,9(1):41−56.
    [29] 周秋丽, 周燕. Nrf2/ARE 信号通路在氧化应激性疾病的作用研究进展[J]. 世界最新医学信息文摘,2020,20(26):104−105. [ZHOU Q L, ZHOU Y. Research progress on the role of Nrf2/ARE signaling pathway in oxidative stress diseases[J]. World Latest Medicine Information,2020,20(26):104−105.
    [30] SU C, XIA X, SHI Q. Neohesperidindihydrochalcone against CCl4-induced hepatic injury through different mechanisms: The implication of free radical scavenging and Nrf2 activation[J]. Journal of Agricultural and Food Chemistry,2015,63(22):5468−5475.
    [31] SHI HT, SHI A, Dong L, et al. Chlorogenic acid facilitates Nrf2-mediated antioxidant gene and protects against CCl4-induced liver injury[J]. Gastroenterology,2016,150(4):S1066.
    [32] LIN Y, KUANG Y, LI K, et al. Nrf2 activators from glycyrrhizainflata and their hepatoprotective activities against CCl4-induced liver injury in mice[J]. Bioorganic and Medicinal Chemistry,2017,25(20):5522−5530.
    [33] PALL M L, LEVINE S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors[J]. Acta Physiologica Sinica,2015,67(1):1−18.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-20
  • 网络出版日期:  2021-10-22
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升