速冻方式对冷冻贮藏中大口黑鲈鱼肉蛋白质特性的影响

石钢鹏 阙凤 高天麒 汪兰 汪超 石柳 吴文锦 乔宇 丁安子 熊光权

石钢鹏,阙凤,高天麒,等. 速冻方式对冷冻贮藏中大口黑鲈鱼肉蛋白质特性的影响[J]. 食品工业科技,2021,42(20):309−319. doi:  10.13386/j.issn1002-0306.2021020051
引用本文: 石钢鹏,阙凤,高天麒,等. 速冻方式对冷冻贮藏中大口黑鲈鱼肉蛋白质特性的影响[J]. 食品工业科技,2021,42(20):309−319. doi:  10.13386/j.issn1002-0306.2021020051
SHI Gangpeng, QUE Feng, GAO Tianqi, et al. Effects of Different Quick-freezing Methods on Protein Properties of Largemouth Bass (Lateolabrax japonicus)[J]. Science and Technology of Food Industry, 2021, 42(20): 309−319. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020051
Citation: SHI Gangpeng, QUE Feng, GAO Tianqi, et al. Effects of Different Quick-freezing Methods on Protein Properties of Largemouth Bass (Lateolabrax japonicus)[J]. Science and Technology of Food Industry, 2021, 42(20): 309−319. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020051

速冻方式对冷冻贮藏中大口黑鲈鱼肉蛋白质特性的影响

doi: 10.13386/j.issn1002-0306.2021020051
基金项目: 财政部和农业农村部:国家现代农业产业技术体系资助(CARS-46)
详细信息
    作者简介:

    石钢鹏(1996−),男,硕士研究生,研究方向:农产品加工与贮藏,E-mail:stoneshi1996@163.com

    通讯作者:

    熊光权(1965−),男,本科,研究员,研究方向:水产品保鲜与加工,E-mail:xiongguangquan@163.com

  • 中图分类号: TS254.1

Effects of Different Quick-freezing Methods on Protein Properties of Largemouth Bass (Lateolabrax japonicus)

  • 摘要: 本文以大口黑鲈为原料,为研究不同降温速率(液氮速冻(1.81 ℃)、冷冻液速冻(0.15 ℃)、平板速冻(0.14 ℃))对冷冻贮藏中(0、1、2、4、12、24周)鲈鱼肉蛋白质特性的影响,通过测定鱼肉中盐溶性蛋白、巯基、羰基、Ca2+-ATPase酶活含量、表面疏水性、内源性荧光光谱和蛋白质组成的变化,并采用双因素方差和相关性分析研究速冻方式和贮藏时间考察冻结后对鱼肉蛋白变性情况。结果表明:随冻藏时间的推移,盐溶性蛋白值呈下降趋势:平板组与液氮组,分别在冻藏末期最低与最高;巯基与Ca2+-ATPase酶活值均呈先上升后下降的趋势;肌原纤维蛋白内源性荧光强度上升,产生蓝移现象,肌原纤维蛋白羰基与表面疏水性值显著性上升(P<0.05)。SDS-PAGE电泳结果表明,冻藏期间肌原纤维蛋白发生降解,而液氮组降温速率快,蛋白质降解程度越慢,平板组与其恰恰相反。液氮速冻形成冰晶体积与原料中水的分布相似,利于贮藏。相比较于液氮速冻,冷冻液速冻形成最大冰晶带时间长于液氮速冻,短于平板速冻,两者相差不大。双因素方差与指标间相关性分析表明,速冻方式对肌原纤维蛋白活性巯基、最大荧光强度影响显著(P<0.05),而冻藏时间是影响鲈鱼蛋白质的主因,冻藏时间越长,肌原纤维蛋白氨基酸侧链基团被氧化修饰,是造成蛋白质降解或聚集的主要因素。
  • 图  1  不同冻结方式对鲈鱼肉中心部位的冻结曲线

    Figure  1.  Freezing curve of the middle part of the Lateolabrax japonicus by different freezing methods

    图  2  不同速冻方式对鲈鱼盐溶性蛋白含量的影响

    Figure  2.  Effects of different quick-freezing methods on the content of salt-soluble protein in Lateolabrax japonicus

    注:同一指标的不同小写字母代表鲈鱼经同种速冻方式,不同贮藏时间存在显著差异(P<0.05);不同大写字母代表同一时间内,不同速冻方式样品间存在显著差异(P<0.05),图2~图6同。

    图  3  不同速冻方式对鲈鱼巯基含量的影响

    Figure  3.  Effects of different quick-freezing methods on the content of sulfhydryl group in Lateolabrax japonicus

    图  4  不同速冻方式对鲈鱼羰基含量的影响

    Figure  4.  Effects of different quick-freezing methods on carbonyl content of Lateolabrax japonicus

    图  5  不同速冻方式对鲈鱼Ca2+ATPase酶活含量的影响

    Figure  5.  Effects of different quick-freezing methods on the activity of Ca2+-ATPase in Lateolabrax japonicus

    图  6  不同速冻方式对鲈鱼表面疏水性的影响

    Figure  6.  Effects of different quick-freezing methods on surface hydrophobicity of Lateolabrax japonicus

    图  7  不同速冻方式对鲈鱼内源荧光强度的影响

    Figure  7.  Effects of different quick-freezing methods on endogenous fluorescence intensity of Lateolabrax japonicus

    注:(a):液氮速冻;(b):冷冻液速冻;(c):平板速冻。

    图  8  冻藏期间鲈鱼肌原纤维蛋白的SDS-PAGE图谱

    Figure  8.  SDS-PAGE patterns of myofibrillar proteins of Lateolabrax japonicus during frozen storage

    注:M:Marker蛋白标样;条带1~3:分别为冷冻液组、平板组、液氮组贮藏1周蛋白条带;条带4~6:分别为上述三组贮藏2周蛋白条带;条带7~9:分别为贮藏4周蛋白条带;条带10~12:分别为贮藏12周蛋白条带;条带13~15:分别为贮藏24周蛋白条带;条带16:为新鲜样品蛋白条带。Co:肌联蛋白;MHC-2:肌球蛋白重链二聚体;MHC:肌球蛋白重链;Ac:肌动蛋白;TM:原肌球蛋白;TNT:肌钙蛋白T亚基;TNI:肌钙蛋白I亚基;MLC-1:肌球蛋白轻链1亚基;MLC-2:肌球蛋白轻链2亚基;MLC-3:肌球蛋白轻链3亚基。

    表  1  不同速冻方式在贮藏期间鲈鱼最大内源性荧光强度

    Table  1.   Maximum endogenous fluorescence intensity of Lateolabrax japonicus during storage in different quick-freezing methods

    贮藏
    时间(周)
    液氮速冻冷冻液速冻平板速冻
    波长
    (nm)
    荧光
    强度
    波长
    (nm)
    荧光
    强度
    波长
    (nm)
    荧光
    强度
    0338.6232.23338.6232.23338.6232.23
    1336.4716.37336.4717.53338687.63
    2337521.4335.8508.3336.4445.87
    4336626.97335661.63335623.6
    12335.81013336.8895.2336.6889.97
    24335.21452.333341406.33335.41495
    下载: 导出CSV

    表  2  冻藏大口黑鲈的蛋白类指标速冻方式和贮藏时间的双因素方差分析结果

    Table  2.   Results of two-factor analysis of variance for the quick-freezing method and storage time of the protein index of frozen Lateolabrax japonicus

    指标/因素速冻方式 贮藏时间 速冻方式&贮藏时间
    F(df=2)P-valueF(df=5)P-valueF(df=10)P-value
    盐溶性蛋白1.4660.244 16.7891.502×10−8 0.5920.810
    总巯基1.8020.17964.2301.110×10−161.2380.301
    活性巯基5.4290.0120.8120.5541.1810.354
    Ca2+-ATPase酶活1.1450.3361.8770.1390.5650.824
    羰基0.0820.9221.4220.2560.5190.858
    表面疏水性2.8830.069283.2590.0004.4444.221×10−4
    最大荧光强度21.7796.327×10−77068.0470.00020.4205.777×10−12
    下载: 导出CSV

    表  3  不同速冻处理对冻藏期间鲈鱼肌原纤维蛋白质生化特性的相关性分析

    Table  3.   Correlation analysis of different quick-freezing treatments on the biochemical characteristics of Lateolabrax japonicus myofibril Protein during frozen storage

    指标盐溶性蛋白总巯基活性巯基Ca2+-ATPase酶活羰基表面疏水性最大荧光强度CoMHCAcTNTMLC-3
    盐溶性蛋白1
    总巯基−0.0701
    活性巯基0.1460.751**1
    Ca2+-ATPase酶活0.743**−0.294*0.0171
    羰基−0.697**0.066−0.189−0.823**1
    表面疏水性−0.587**−0.057−0.267−0.686**0.804**1
    最大荧光强度−0.599**−0.077−0.353**−0.634**0.824**0.921**1
    Co−0.1660.1340.210−0.158−0.045−0.325*−0.2581
    MHC0.108−.545**−0.269*0.267−0.325*−0.438**−0.442**0.603**1
    Ac−0.280*−0.265−0.105−0.1970.131−0.0010.0230.753**0.765**1
    TNT0.078−0.1660.1930.350**−0.199−.298*−0.290*0.449**0.551**0.590**1
    MLC-3−0.273*0.0870.237−0.293*0.226−.0140.0140.827**0.479**0.832**0.480**1
    注:*表示显著相关,P<0.05;**表示极显著相关,P<0.01。
    下载: 导出CSV
  • [1] 农业部渔业渔政管理局. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 1−158.

    Fishery and Fishery Administra-tion Bureau of the Ministry of Agriculture. 2020 China fishery statistics yearbook[M]. Beijing: China Agriculture Press, 2020: 1−158.
    [2] 吴燕燕, 李冰, 朱小静, 等. 养殖海水和淡水鲈鱼的营养组成分析比较[J]. 食品工业科技,2016,37(20):348−352. [Wu Yanyan, Li Bing, Zhu Xiaojing, et al. Analysis and comparison of nutritional composition of cultured seawater and freshwater sea bass[J]. Food Industry Science and Technology,2016,37(20):348−352.
    [3] 邓锦锋, 王安利, 周初霞, 等. 鲈鱼的营养研究进展[J]. 饲料工业,2006,27(10):59−60. [Deng Jinfeng, Wang Anli, Zhou Chuxia, et al. Nutritional research progress of sea bass[J]. Feed Industry,2006,27(10):59−60. doi:  10.3969/j.issn.1001-991X.2006.10.017
    [4] 郭园园, 孔保华. 冷冻贮藏引起的鱼肉蛋白质变性及物理化学特性的变化[J]. 食品科学,2011,32(7):335−340. [Guo Yuanyuan, Kong Baohua. Fish protein denaturation and changes in physical and chemical properties caused by frozen storage[J]. Food Science,2011,32(7):335−340.
    [5] 王联珠, 谭乐义, 陈远惠, 等. 我国冷冻水产品质量状况及发展前景[J]. 海洋水产研究,2002,23(2):83−88. [Wang Lianzhu, Tan Leyi, Chen Yuanhui, et al. The quality status and development prospects of frozen aquatic products in my country[J]. Marine Fisheries Research,2002,23(2):83−88.
    [6] Benjakul S, Sutthipan N. Muscle changes in hard and soft shell crabs during frozen storage[J]. LWT-Food Science and Technology,2009,42(3):723−729. doi:  10.1016/j.lwt.2008.10.003
    [7] 鲁裙. 液氮深冷速冻对带鱼和银鳍品质及其肌肉组织的影响[D]. 杭州: 浙江大学, 2015.

    Lu Qun. The effect of liquid nitro-gen deep freezing and quick freezing on the quality and muscle tissue of hairtail and silver fin[D]. Hangzhou: Zhejiang University, 2015.
    [8] Hamre K, Lie Ø, Sandnes K. Development of lipid oxidation and flesh colour in frozen stored fillets of Norwegian spring-spawning herring (Clupea harengus L.). Effects of treatment with ascorbic acid[J]. Food Chemistry,2003,82(3):447−453. doi:  10.1016/S0308-8146(03)00070-0
    [9] Sun Q, Sun F, Xia X, et al. The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage[J]. Ultrasonics Sono-chemistry,2019,51:281−291. doi:  10.1016/j.ultsonch.2018.10.006
    [10] Careche M, Tejada M. Hake natural actomyosin interaction with free fatty acids during frozen storage[J]. Journal of the Science of Food and Agriculture,1994,64(4):501−507. doi:  10.1002/jsfa.2740640417
    [11] Yuan C, Yu K, Chen S, et al. Effect of freezing rate on the denaturation of myofibrillar protein in fish muscle[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers,2006,23(3):329−334.
    [12] Liang D, Lin F, Yang G, et al. Advantages of immersion freezing for quality preservation of litchi fruit during frozen storage[J]. LWT-Food Science and Technology,2015,60(2):948−956. doi:  10.1016/j.lwt.2014.10.034
    [13] Yang F, Jing D, Diao Y, et al. Effect of immersion freezing with edible solution on freezing efficiency and physical properties of obscure pufferfish (Takifugu obscurus) fillets[J]. LWT,2020,118:108762. doi:  10.1016/j.lwt.2019.108762
    [14] 任丽娜. 白鲢鱼肉肌原纤维蛋白冷冻变性的研究[D]. 无锡: 江南大学, 2014.

    Ren Lina. Study on frozen denaturation of silver carp myofibrillar protein[D]. Wuxi: Jiangnan University, 2014.
    [15] 董开成. 不同低温预处理对小黄鱼贮藏过程中品质的影响[D]. 杭州: 浙江大学, 2015.

    Dong Kaicheng. The effect of diffe-rent low-temperature pretreatments on the quality of small yellow croaker during storage[D]. Hangzhou: Zhejiang University, 2015.
    [16] 石钢鹏, 周俊鹏, 章蔚, 等. 超高压与热烫预处理对克氏原螯虾肉冻藏品质的影响[J]. 食品工业科技,2020,41(15):288−296, 322. [Shi Gangpeng, Zhou Junpeng, Zhang Wei, et al. Effects of ultra-high pressure and blanching pretreatment on the quality of frozen Procambarus clarkii[J]. Food Industry Science and Technology,2020,41(15):288−296, 322.
    [17] 李清正, 张顺亮, 罗永康, 等. 温度对复合肌原纤维蛋白结构及其表面疏水性的影响[J]. 肉类研究,2017,31(2):6−10. [Li Qingzheng, Zhang Shunliang, Luo Yongkang, et al. The effect of temperature on the structure of composite myofibril protein and its surface hydrophobicity[J]. Meat Research,2017,31(2):6−10. doi:  10.7506/rlyj1001-8123-201702002
    [18] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680−685. doi:  10.1038/227680a0
    [19] 朱姝冉, 张淼, 周光宏, 等. 利用光谱技术分析加热温度对肌红蛋白结构的影响[J]. 食品工业科技,2018,39(24):35−39. [Zhu Shuran, Zhang Miao, Zhou Guanghong, et al. Analysis of the influence of heating temperature on the structure of myoglobin using spectroscopy[J]. Food Industry Science and Technology,2018,39(24):35−39.
    [20] 向迎春, 黄佳奇, 杨志坚, 等. 冻结方式对凡纳滨对虾贮藏中组织冰晶及品质的影响[J]. 食品工业科技,2018,39(5):280−286. [Xiang Yingchun, Huang Jiaqi, Yang Zhijian, et al. Effects of freezing methods on ice crystals and quality of Litopenaeus vannamei in storage[J]. Science and Technology of Food Industry,2018,39(5):280−286.
    [21] Kaale L D, Eikevik T M, Bardal T, et al. The effect of cooling rates on the ice crystal growth in air-packed salmon fillets during superchilling and superchilled storage[J]. International Journal of Refrigeration,2013,36(1):110−119. doi:  10.1016/j.ijrefrig.2012.09.006
    [22] 丁玉庭, 陈艳, 邹礼根, 等. 猪PSE肉与正常肉肌原纤维蛋白质抽提率和持水性的比较研究[J]. 中国食品学报,2004,.4(2):62−65. [Ding Yuting, Chen Yan, Zou Ligen, et al. Comparative study on protein extraction rate and water holding capacity of pig PSE meat and normal meat myofibril[J]. Chinese Journal of Food Science,2004,.4(2):62−65. doi:  10.3969/j.issn.1009-7848.2004.02.013
    [23] 黄莉, 吕鸿皓, 董福家, 等. 骨蛋白水解物和魔芋复配对冷冻鱼糜抗冻效果的研究[J]. 食品工业科技,2014,35(22):139−144. [Huang Li, Lv Honghao, Dong Fujia, et al. Study on the antifreeze effect of bone protein hydrolysate and konjac on frozen surimi[J]. Food Industry Science and Technology,2014,35(22):139−144.
    [24] Gao W, Huang Y, Zeng X, et al. Effect of soluble soybean polysaccharides on freeze-denaturation and structure of myofibrillar protein of bighead carp surimi with liquid nitrogen freezing[J]. International Journal of Biological Macromolecules,2019,135:839−844. doi:  10.1016/j.ijbiomac.2019.05.186
    [25] Makri M. Full length research paper biochemical and textural properties of frozen stored (−22 ℃) gilthead seabream (Sparus aurata) fillets[J]. African Journal of Biotechnology,2009,8(7):1287−1299.
    [26] 杨利艳, 曹文红, 章超桦, 等. 冷冻方式对凡纳滨对虾品质特性的影响[J]. 食品与机械,2011(5):156−159, 199. [Yang Liyan, Cao Wenhong, Zhang Chaohua, et al. Effects of freezing methods on the quality characteristics of Litopenaeus vannamei[J]. Food and Machinery,2011(5):156−159, 199. doi:  10.3969/j.issn.1003-5788.2011.05.041
    [27] Buttkus H. The sulfhydryl content of rabbit and trout myosins in relation to protein stability[J]. Canadian Journal of Biochemistry,1971,49(1):97−107. doi:  10.1139/o71-015
    [28] Levine R L, Wehr N, Williams J A, et al. Determination of carbonyl groups in oxidized proteins[J]. Methods in Molecular Biology,2000,99(1):15.
    [29] 朱卫星, 王远亮, 李宗军. 蛋白质氧化机制及其评价技术研究进展[J]. 食品工业科技,2011,32(11):483−486. [Zhu Weixing, Wang Yuanliang, Li Zongjun. Progress in protein oxidation mechanism and its evaluation technology[J]. Science and Technology of Food Industry,2011,32(11):483−486.
    [30] Estévez M. Protein carbonyls in meat systems: A review[J]. Meat Science,2011,89(3):259−279. doi:  10.1016/j.meatsci.2011.04.025
    [31] Sitte N, Merker K, Von Zglinicki T, et al. Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts[J]. Free Radical Biology and Medicine,2000,28(5):701−708.
    [32] 文镜, 张春华, 董雨, 等. 蛋白质羰基含量与蛋白质氧化损伤[J]. 食品科学,2003,24(10):153−157. [Wen Jing, Zhang Chunhua, Dong Yu, et al. Protein carbonyl content and protein oxidative damage[J]. Food Science,2003,24(10):153−157. doi:  10.3321/j.issn:1002-6630.2003.10.039
    [33] Estevez M, Ventanas S, Heinonen M, et al. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: Effect of muscle type, premincing, and packaging[J]. Journal of Agricultural & Food Chemistry,2011,59(10):5435−5443.
    [34] 卢涵. 鳙鱼肉低温贮藏过程中蛋白氧化、组织蛋白酶活性与品质变化规律的研究[D]. 北京: 中国农业大学.

    Lu Han. Study on protein oxidation, cathepsin activity and quality changes during low-temperature storage of bighead carp meat[D]. Beijing: China Agricultural University.
    [35] 蒋祎人, 李涛, 刘友明, 等. 丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响[J]. 食品科学,2020,41(6):1−7. [Jiang Yiren, Li Tao, Liu Youming, et al. The effect of malondialdehyde oxidative modification on the structure and properties of silver carp myofibril protein[J]. Food Science,2020,41(6):1−7. doi:  10.7506/spkx1002-6630-20190411-143
    [36] 赵亚, 石启龙, 曹淑敏. 南美白对虾贮藏期间Ca2+-ATPase活力变化规律与机制[J]. 食品科学,2018,39(5):258−264. [Zhao Ya, Shi Qilong, Cao Shumin. The law and mechanism of Ca2+-ATPase activity change of Penaeus vannamei during storage[J]. Food Science,2018,39(5):258−264. doi:  10.7506/spkx1002-6630-201805039
    [37] 鲁珺. 液氮深冷速冻对带鱼和银鲳品质及其肌肉组织的影响[D]. 杭州: 浙江大学, 2015.

    Lu Jun. The effect of liquid nitro-gen deep freezing and quick freezing on the quality and muscle tissue of hairtail and silver pomfret[D]. Hangzhou: Zhejiang University, 2015.
    [38] 曾名勇, 黄海, 李八方. 鳙肌肉蛋白质生化特性在冻藏过程中的变化[J]. 水产学报,2003,27(5):480−485. [Zeng Mingyong, Huang Hai, Li Bafang. Changes in the biochemical properties of bighead carp muscle protein during freezing storage[J]. Journal of Fisheries,2003,27(5):480−485.
    [39] 闫春子, 夏文水, 许艳顺. 超高压对草鱼肌原纤维蛋白结构的影响[J]. 食品与生物技术学报,2018,37(4):424−428. [Yan Chunzi, Xia Wenshui, Xu Yanshun. The effect of ultra-high pressure on the structure of grass carp myofibril protein[J]. Journal of Food and Biotechnology,2018,37(4):424−428. doi:  10.3969/j.issn.1673-1689.2018.04.014
    [40] Riebroy S, Benjakul S, Visessanguan W, et al. Acid-induced gelation of natural actomyosin from Atlantic cod (Gadus morhua) and burbot (Lota lota)[J]. Food Hydrocolloids,2009,23(1):26−39. doi:  10.1016/j.foodhyd.2007.11.010
    [41] Zhou A, Benjakul S, Pan K, et al. Cryoprotective effects of trehalose and sodium lactate on tilapia (Sarotherodon nilotica) surimi during frozen storage[J]. Food Chemistry,2006,96(1):96−103. doi:  10.1016/j.foodchem.2005.02.013
    [42] Leelapongwattana K, Benjakul S, Visessanguan W, et al. Physicochemical and biochemical changes during frozen storage of minced flesh of lizardfish (Saurida micropectoralis)[J]. Food Chemistry,2005,90(1−2):141−150. doi:  10.1016/j.foodchem.2004.03.038
    [43] Wang K, Sun D W, Pu H, et al. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review[J]. Trends in Food Science & Technology,2017,67:207−219.
    [44] 袁春红, 陈舜胜, 程裕东, 等. 冻结条件与冻藏温度对鲤鱼肉肌原纤维蛋白冷冻变性的影响[J]. 上海水产大学学报,2001,10(1):44−48. [Yuan Chunhong, Chen shunsheng, Cheng Yudong, et al. The effects of freezing conditions and freezing storage temperature on the freezing denaturation of carp myofibril protein[J]. Journal of Shanghai Fisheries University,2001,10(1):44−48.
    [45] 郭园园, 孔保华, 夏秀芳, 等. 冷冻-解冻循环对鲤鱼肉物理化学特性的影响[J]. 食品科学,2011,32(13):125−130. [Guo Yuanyuan, Kong Baohua, Xia Fangfang, et al. Effects of freezing thawing cycle on physicochemical properties of carp meat[J]. Food Science,2011,32(13):125−130.
    [46] Shi L, Beamer S K, Yin T, et al. Mass balance for isoelectric solubilization/precipitation of carp, chicken, menhaden, and krill[J]. LWT-Food Science and Technology,2017,81:26−34. doi:  10.1016/j.lwt.2017.03.029
    [47] Maruyama N. Comparison of reactivity of transglutaminase to various fish actomyosins[J]. Fish Sci,1995,61:495−500. doi:  10.2331/fishsci.61.495
    [48] Lu H, Zhang L, Li Q, et al. Comparison of gel properties and biochemical characteristics of myofibrillar protein from bighead carp (Aristichthys nobilis) affected by frozen storage and a hydroxyl radical-generation oxidizing system[J]. Food Chemistry,2017,223(May 15):96−103.
    [49] Decker E A, Xiong Y L, Calvert J T, et al. Chemical, physical, and functional properties of oxidized turkey white muscle myofibrillar protein[J]. J Agric Food Chem,1993,41(2):186−189. doi:  10.1021/jf00026a007
    [50] Shi L, Yin T, Xiong G, et al. Microstructure and physicochemical properties: Effect of pre-chilling and storage time on the quality of channel catfish during frozen storage[J]. LWT,2020:109606.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  33
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 网络出版日期:  2021-08-30
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升