辅助能量物质与谷胱甘肽协同作用促进环磷酸腺苷发酵生产

李志刚 张朝辉 谭海 卢南巡 张中华 常景玲

李志刚,张朝辉,谭海,等. 辅助能量物质与谷胱甘肽协同作用促进环磷酸腺苷发酵生产[J]. 食品工业科技,2021,42(20):119−125. doi:  10.13386/j.issn1002-0306.2021010246
引用本文: 李志刚,张朝辉,谭海,等. 辅助能量物质与谷胱甘肽协同作用促进环磷酸腺苷发酵生产[J]. 食品工业科技,2021,42(20):119−125. doi:  10.13386/j.issn1002-0306.2021010246
LI Zhigang, ZHANG Chaohui, TAN Hai, et al. Enhancing cAMP Fermentation Formation via Glutathione and Auxiliary Energy Substance Coupling Addition[J]. Science and Technology of Food Industry, 2021, 42(20): 119−125. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010246
Citation: LI Zhigang, ZHANG Chaohui, TAN Hai, et al. Enhancing cAMP Fermentation Formation via Glutathione and Auxiliary Energy Substance Coupling Addition[J]. Science and Technology of Food Industry, 2021, 42(20): 119−125. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010246

辅助能量物质与谷胱甘肽协同作用促进环磷酸腺苷发酵生产

doi: 10.13386/j.issn1002-0306.2021010246
基金项目: 河南科技学院高层次人才科研启动项目(2015006)
详细信息
    作者简介:

    李志刚(1984−),男,博士,讲师,研究方向:发酵过程优化,E-mail:lizhigang25@126.com

    通讯作者:

    常景玲(1963−),女,本科,教授,研究方向:发酵制药,E-mail:changjl001@126.com

  • 中图分类号: TS201.3

Enhancing cAMP Fermentation Formation via Glutathione and Auxiliary Energy Substance Coupling Addition

  • 摘要: 目的:探究添加辅助能量物质导致环磷酸腺苷(cAMP)发酵后期产物合成停滞的原因,针对性解除限制因素,进一步提高产物产量。方法:在7 L发酵罐上进行添加辅助能量物质的发酵实验,对发酵动力学参数、细胞活性、能量代谢水平以及活性氧(ROS)含量等进行分析,根据分析结果进行了耦合添加谷胱甘肽和辅助能量物质的发酵实验。结果:单独添加柠檬酸钠、丙酮酸钠批次的产物合成和菌体生长速率在发酵前期均明显高于对照,约30 h后快速下降,降至低于对照批次的低水平;菌体活性、ATP/AMP以及电子呼吸链活性在发酵36 h后也剧烈下降,下降幅度远远大于对照批次。添加辅助能量物质导致ROS和丙二醛在发酵36 h后迅速积累,极显著(P<0.01)高于对照批次,而NADPH/NADP+却快速下降,明显低于对照。耦合添加辅助能量物质和谷胱甘肽的发酵批次中,细胞活性得到较大提升,cAMP产量得到进一步提高。柠檬酸钠耦合GSH批次与丙酮酸钠耦合GSH批次的cAMP产量分别达到4.05和4.32 g/L,比单独添加GSH批次分别提高了15.2%和22.7%,与对照(无辅助能量物质和谷胱甘肽添加)相比分别提高了21.9%和30.1%。结论:辅助能量物质强化能量代谢促进产物合成的同时,增加了电子呼吸链中电子泄漏的几率,大量活性氧产生超出细胞承受能力,导致发酵后期细胞生长和产物合成的停滞。辅助能量物质与谷胱甘肽协同作用,有效缓解了氧化胁迫,提高细胞活性,进一步促进产物发酵生产。
  • 图  1  添加辅助能量物质对细胞生长和cAMP发酵合成的影响

    Figure  1.  Effects of auxiliary energy substances on cells growth and cAMP fermentation synthesis

    注:**表示与对照相比差异极显著(P<0.01);图2~图4同。

    图  2  辅助能量物质对细胞活性及呼吸代谢的影响

    Figure  2.  Effects of auxiliary energy substances on cell viability during fermentation period

    图  3  添加辅助能量物质对细胞能量代谢的影响

    Figure  3.  Effects of auxiliary energy substances on cell energy metabolism

    图  4  辅助能量物质激发氧化胁迫造成细胞物质损伤

    Figure  4.  Addition of auxiliary energy substances triggered oxidative stress causing cell damage

    图  5  谷胱甘肽提高细胞活性促进cAMP发酵合成

    Figure  5.  Exogenous glutathione enhanced cells viability and cAMP production

    注:**表示与仅添加GSH批次相比,差异极显著(P<0.01)。

  • [1] Argyrousi E K, Heckman P R, Prickaerts J, et al. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot[J]. Neuroscience and Biobehavioral Reviews,2020,113:12−38. doi:  10.1016/j.neubiorev.2020.02.004
    [2] Wang D C, Qi J Z, Han W, et al. Kanamycin-induced production of 2’,3’-cyclic AMP in Escherichia coli[J]. Biochemical and Biophysical Research Communications,2020,527(4):854−860. doi:  10.1016/j.bbrc.2020.04.144
    [3] Dong J, Fu X M, Wang P F, et al. Construction of industrial baker's yeast with high level of cAMP[J]. Journal of Food Biochemistry,2019,43(7):1−7.
    [4] Chen Y, Li S Y, Xiong J, et al. The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5’-monophosphate by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2010,86:75−81. doi:  10.1007/s00253-009-2287-y
    [5] Zhang H, Zhu J Z, Zhu X C, et al. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10[J]. Bioresource Technology,2012,116:241−246. doi:  10.1016/j.biortech.2011.11.085
    [6] 李志刚, 陈宝峰, 张中华, 等. 辅助能量物质强化环磷酸腺苷发酵合成机制[J]. 中国生物工程杂志,2020,40(1/2):102−108. [Li Z G, Chen B F, ZHANG Z H, et al. The physiological mechanism for enhanced cyclic adenosine monophosphate biosynthesis by auxiliary energy substance[J]. China Biotechnology,2020,40(1/2):102−108.
    [7] Chen S X, Chu J, Zhuang Y P, et al. Enhancement of inosine production by Bacillus subtilis through suppression of carbon overflow by sodium citrate[J]. Biotechnology Letters,2005,27:689−692. doi:  10.1007/s10529-005-4686-1
    [8] Wang Y L, Wang D H, Wei G Y, et al. Improved co-production of S-adenosylmethionine and glutathione using citrate as an auxiliary energy substrate[J]. Bioresource Technology,2013,131:28−32. doi:  10.1016/j.biortech.2012.10.168
    [9] Chen X C, Song H, Fang T, et al. Enhanced cyclic adenosine monophosphate production by Arthrobacter A302 through rational redistribution of metabolic flux[J]. Bioresource Technology,2010,101:3159−3163. doi:  10.1016/j.biortech.2009.12.081
    [10] Xia J, Xu Z X, Xu H, et al. The regulatory effect of citric acid on the co-production of poly(ε-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1[J]. Bioprocess and Biosystems Engineering,2014,37:2095−2103. doi:  10.1007/s00449-014-1187-4
    [11] 李志刚, 陈宝峰, 方智博, 等. 基于柠檬酸盐与次黄嘌呤偶合添加的环磷酸腺苷发酵工艺[J]. 食品与发酵工业,2018,44(11):154−158. [Li Z G, Chen B F, Fang Z B, et al. A novel fermentation process for cyclic adenosine monophosphate production based on citrate coupling hypoxanthine addition in pulses[J]. Food and Fermentation Industries,2018,44(11):154−158.
    [12] González-Siso M I, Garcia-Leiro A, Tarrio N, et al. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis[J]. Microbial Cell Factories,2009,8:46−49. doi:  10.1186/1475-2859-8-46
    [13] Yan P, Sun H B, Lu P Q, et al. Enhancement of ε-poly-L-lysine synthesis in Streptomyces by exogenous glutathione[J]. Bioprocess and Biosystems Engineering,2018,41:129−134. doi:  10.1007/s00449-017-1849-0
    [14] Li S, Ji J Y, Hu S J, et al. Enhancement of ε-poly-L-lysine production in Streptomyces griseofuscus by addition of exogenous astaxanthin[J]. Bioprocess and Biosystems Engineering,2020,43:1813−1821. doi:  10.1007/s00449-020-02372-y
    [15] 李志刚, 顾阳, 陈宝峰, 等. 硝酸盐促进环磷酸腺苷发酵合成的生理机制研究[J]. 食品工业科技,2021,42(1):115−120. [Li Z G, Gu Y, Chen B F, et al. Physiological mechanism for enhanced cyclic adenosine monophosphate biosynthesis by sodium nitrate in Arthrobacter sp. CCTCC M2013431[J]. Science and Technology of Food Industry,2021,42(1):115−120.
    [16] Niu H Q, Wang J Z, Zhuang W, et al. Comparative transcriptomic and proteomic analysis of Arthrobacter sp CGMCC 3584 responding to dissolved oxygen for cAMP production[J]. Scientific Reports,2018,8(1):1246−1249. doi:  10.1038/s41598-017-18889-4
    [17] Hatzinger P, Palmer P, Smith R, et al. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria[J]. Journal of Microbiological Methods,2003,52(1):47−58. doi:  10.1016/S0167-7012(02)00132-X
    [18] Huang J C, Zhong Y J, Liu J, et al. Metabolic engineering of tomato for high-yield production of astaxanthin[J]. Metabolic Engineering,2013,17:59−67. doi:  10.1016/j.ymben.2013.02.005
    [19] Liu C B, Pan F, Li Y, et al. A combined approach of generalized additive model and bootstrap with small sample sets for fault diagnosis in fermentation process of glutamate[J]. Microbial Cell Factories,2016,15:1−6. doi:  10.1186/s12934-015-0402-6
    [20] 徐若烊, 王大慧, 许宏庆, 等. 丙酮酸钠促进S-腺苷蛋氨酸和谷胱甘肽联合高产及其生理机制[J]. 食品工业科技,2018,39(2):113−118. [Xu R Y, Wang D H, Xu H Q, et al. Sodium pyruvate improves the co-production of S-adenosylmethionine and glutathione and its physiological mechanism[J]. Science and Technology of Food Industry,2018,39(2):113−118.
    [21] Hara K, Kondo A. ATP regulation in bioproduction[J]. Microbial Cell Factories,2015,14(1):198−207. doi:  10.1186/s12934-015-0390-6
    [22] Chen H L, Cao X T, Zhu N Q, et al. A stepwise control strategy for glutathione synthesis in Saccharomyces cerevisiae based on oxidative stress and energy metabolism[J]. World Journal of Microbiology and Biotechnology,2020,36(8):1−8.
    [23] Shao H, Tu Y, Wang Y J, et al. Oxidative stress response of Aspergillus oryzae induced by hydrogen peroxide and menadione sodium bisulfite[J]. Microorganisms,2019,7:225−237. doi:  10.3390/microorganisms7080225
    [24] Angelova M B, Pashova S B, Spasova B K, et al. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat[J]. Mycological Research,2005,109(2):150−158. doi:  10.1017/S0953756204001352
    [25] Satowa D, Fujiwara R, Uchio S, et al. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply[J]. Biotechnology and Bioengineering,2020,117(7):1−8.
    [26] 许曼, 江贤章, 黄建忠, 等. 强化类球红细菌辅因子NADPH再生以提高法尼醇的产量[J]. 生物工程学报,2020,36(1):90−99. [Xu M, Jiang X Z, Huang J Z, et al. Reinforcement of Rhodobacter sphaeroides cofactor NADPH to increase the production of farnesol[J]. Chinese Journal of Biotechnology,2020,36(1):90−99.
    [27] Zeng X, Chen X S, Gao Y, et al. Continuously high reactive oxygen species generation decreased the specific ε-poly-L-lysine formation rate in fed-batch fermentation using glucose and glycerol as a mixed carbon source[J]. Process Biochemistry,2015,50:1993−2003. doi:  10.1016/j.procbio.2015.09.012
    [28] Li Y, Hugenholtz J, Abee T, et al. Glutathione protects Lactococcus lactis against oxidative stress[J]. Applied and Environmental Microbiology,2003,69:5739−5745. doi:  10.1128/AEM.69.10.5739-5745.2003
    [29] Penninckx M J. An overview on glutathione in Saccharomyces versus non-conventional yeasts[J]. FEMS Yeast Research,2002,2:295−305.
  • 加载中
图(5)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  35
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升