Plackett-Burnman联合响应面法优化黑果枸杞黄酮提取工艺及抗氧化性研究

王春林 武芸 芦娅妮 韩明虎 王丽朋 胡浩斌

王春林,武芸,芦娅妮,等. Plackett-Burnman联合响应面法优化黑果枸杞黄酮提取工艺及抗氧化性研究[J]. 食品工业科技,2021,42(18):218−225. doi:  10.13386/j.issn1002-0306.2021010239
引用本文: 王春林,武芸,芦娅妮,等. Plackett-Burnman联合响应面法优化黑果枸杞黄酮提取工艺及抗氧化性研究[J]. 食品工业科技,2021,42(18):218−225. doi:  10.13386/j.issn1002-0306.2021010239
WANG Chunlin, WU Yun, LU Yani, et al. Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 218−225. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010239
Citation: WANG Chunlin, WU Yun, LU Yani, et al. Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 218−225. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010239

Plackett-Burnman联合响应面法优化黑果枸杞黄酮提取工艺及抗氧化性研究

doi: 10.13386/j.issn1002-0306.2021010239
基金项目: 甘肃省自然科学基金资助项目(18JR3RM235);甘肃省高等学校科研项目(2018A-099)
详细信息
    作者简介:

    王春林(1982−),女,硕士,副教授,主要从事植物生理及植物营养方面的研究,E-mail:540888016@qq.com

  • 中图分类号: TS255.1

Optimization of Extraction Process of Flavonoids from Lycium ruthenicum Murr. by Plackett-Burnman with Response Surface Methodology and Its Antioxidation Activity

  • 摘要: Plackett-Burnman(PB)联合响应面法优化黑果枸杞黄酮提取工艺并评价其抗氧化性。依次通过PB实验设计、最陡爬坡实验设计研究了5种影响因素对提取率的影响,确定了显著性影响因素及响应面中心,采用Box-Behnken(BB)实验设计优化了提取工艺;采用FRAP法及ABTS、DPPH法评价了黑果枸杞黄酮的抗氧化性,并与抗坏血酸进行了平行比较。结果表明,最佳提取工艺参数为:51%乙醇(体积分数)与原料之比为30:1(mL/g),62 ℃、240 W超声辅助提取42 min,提取率可达42.0974 mg/g(原料),与理论预测值的相对标准偏差为3.24%;FRAP法及ABTS、DPPH法均表明,黑果枸杞总黄酮还原力强于抗坏血酸,其对ABTS、DPPH自由基清除的IC50分别为0.0252、0.0272 mg/mL,均较抗坏血酸强,且二者抗氧化性均与浓度呈量效关系,为开发黑果枸杞资源、拉长其产业链提供了一定的理论基础。
  • 图  1  单因素实验结果

    Figure  1.  Results of single factor experiment

    图  2  响应面3D图

    Figure  2.  Response surface 3D graph

    图  3  黑果枸杞黄酮及抗坏血酸的还原力

    Figure  3.  Reducing power of Lycium ruthenicum Murr. polyphenols and ascorbic acid

    图  4  黑果枸杞黄酮及抗坏血酸的ABTS+自由基清除能力

    Figure  4.  ABTS+· scavenging force of Lycium ruthenicum Murr. polyphenols and ascorbic acid

    图  5  黑果枸杞黄酮及抗坏血酸的DPPH自由基清除能力

    Figure  5.  DPPH· scavenging force of Lycium ruthenicum Murr. polyphenols and ascorbic acid

    表  1  单因素实验各因素考察参数及固定水平

    Table  1.   Parameters and fixed level of each factor in single factor experiments

    因素考察参数固定水平
    乙醇体积分数(%)40、50、60、70、80、9050
    提取时间(min)30、40、50、60、7040
    提取温度(℃)40、50、60、70、80、9070
    液料比(mL/g)15:1、20:1、25:1、30:1、35:1、40:130:1
    超声功率(W)150、180、210、240、270、300240
    下载: 导出CSV

    表  2  PB实验设计中的因素及水平

    Table  2.   Factors and levels tested in PB design

    序号因素低水平(−1)高水平(+1)
    A乙醇体积分数(%)5075
    B提取时间(min)2540
    C提取温度(℃)4570
    D液料比(mL/g)20:130:1
    E超声功率(W)160240
    下载: 导出CSV

    表  3  响应面因素及水平

    Table  3.   Factors and levels in response surface design

    因素及水平乙醇体积分数
    (A,%)
    提取温度
    (B,℃)
    提取时间
    (C,min)
    −1305025
    0506540
    1708055
    下载: 导出CSV

    表  4  PB实验设计及结果

    Table  4.   PB experimental design and results

    实验
    ABCDETFC
    (mg/g)
    1+1+1−1+1−127.22
    2+1+1−1+1+127.61
    3+1+1+1−1+131.17
    4−1+1+1+1−136.35
    5−1−1−1−1−134.94
    6−1−1+1+1+141.27
    7−1+1−1−1−127.63
    8−1+1+1−1+134.87
    9−1−1−1+1+135.34
    10+1−1+1−1−136.66
    11+1−1+1+1−136.51
    12+1−1−1−1+132.66
    下载: 导出CSV

    表  5  PB实验方差分析

    Table  5.   Variance analysis results of PB design

    方差来源自由度平方和均方FP显著性
    模型5203.70840.74241.530.000***
    截距5203.70840.74241.530.000***
    A128.73728.73729.290.002***
    B188.18388.18389.890.000***
    C182.32082.32083.910.000***
    D13.3813.3813.450.113
    E11.0861.0861.110.333
    误差65.8860.9811
    总数11209.595
    S0.990487R-sq(adjusted)0.9485
    R-sq0.9719R-sq(predicte)0.8877
    注:*表示P<0.05;**表示P<0.01;***表示P<0.001;表9同。
    下载: 导出CSV

    表  6  各因素的正负效应及显著性

    Table  6.   Positive and negative effects and significance of each factor

    因素效应系数显著性数值影响大小排名
    乙醇体积分数−1.5480.0023
    提取温度2.6190.0002
    提取时间−2.7110.0001
    液料比0.5310.1134
    超声功率0.3010.3335
    注:各影响大小排名以升序排列,排名序号越小,影响越大。
    下载: 导出CSV

    表  7  最陡爬坡试验设计及结果

    Table  7.   Experimental design and result in steepest ascent method

    实验
    乙醇体积分数
    (%)
    提取温度
    (℃)
    提取时间
    (min)
    液料比
    (mL/g)
    超声功率
    (W)
    TFC
    (mg/g)
    170456030:124034.46
    265505530:124035.63
    360555030:124036.60
    455604530:124038.57
    550654030:124040.38
    645703530:124038.01
    740753030:124036.28
    下载: 导出CSV

    表  8  Box-Behnken试验设计及结果

    Table  8.   Experimental design and results in Box-Behnken

    实验号ABCDETFC(mg/g)
    1−10+130:124037.85
    2+10−130:124037.62
    3+1−1030:124038.61
    40+1+130:124037.61
    50+1−130:124039.02
    6−1+1030:124037.32
    700030:124041.11
    8−10−130:124038.09
    9−1−1030:124038.82
    1000030:124041.31
    110−1−130:124037.62
    12+1+1030:124038.73
    130−1+130:124039.99
    14+10+130:124038.51
    1500030:124040.85
    1600030:124041.05
    1700030:124040.56
    下载: 导出CSV

    表  9  Box-Behnken实验结果方差分析

    Table  9.   ANOVA results of Box-Behnken design

    方差来源平方和自由度均方FP显著性
    模型31.3993.4950.50<0.0001***
    A0.2410.243.500.1037
    B0.7010.7010.080.0156*
    C0.3210.324.690.0670
    AB0.6610.669.500.0178*
    AC0.3210.324.620.0686
    BC3.5713.5751.720.0002***
    A210.43110.43151.09<0.0001***
    B24.4814.4864.90<0.0001***
    C28.0718.07116.82<0.0001***
    残差0.4870.069
    失拟性0.1630.0530.660.6199
    纯误差0.3240.081
    总差31.8716
    R2=0.9848R2adj=0.9653
    R2pred=0.9040
    下载: 导出CSV
  • [1] Peng Y J, Yan Y M, Wan P, et al. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice[J]. Free Radical Biology and Medicine,2019,136:96−108. doi:  10.1016/j.freeradbiomed.2019.04.005
    [2] Tian B M, Zhao J H, An W, et al. Lycium ruthenicum diet alters the gut microbiota and partially enhances gut barrier function in male C57BL/6 mice[J]. Journal of Functional Foods,2019,52:516−528. doi:  10.1016/j.jff.2018.11.034
    [3] 双全, 张海霞, 卢宇, 等. 野生黑果枸杞化学成分及抗氧化活性研究[J]. 食品工业科技,2017,38(4):94−100. [Shuang Q, Zhang H X, Lu Y, et al. The research on chemical componentand antioxidant activity of wild Lycium ruthenicum[J]. Science and Technology of Food Industry,2017,38(4):94−100.
    [4] 张霞, 张芳, 高晓娟, 等. 不同干燥方法对黑果枸杞中活性成分含量及其抗氧化活性的影响[J]. 中国中药杂志,2017,42(20):3926−3931. [Zhang X, Zhang F, Gao X J, et al. Effects of different drying methods on content of bioactive component andantioxidant activity in Lycium ruthenicum[J]. China Journal of Chinese Materia Medica,2017,42(20):3926−3931.
    [5] 尹民强, 吴金龙, 王天琦, 等. 黑果枸杞抗氧化能力评价及比较研究[J]. 中国果菜,2019,39(11):52−56. [Yin M Q, Wu J L, Wang T Q, et al. Evaluation and comparative study on antioxidant capacity of Lycium ruthenicum Murr[J]. China Fruit & Vegetable,2019,39(11):52−56.
    [6] Zhang J T, Dong Y S, Tanzeela N, et al. Effect of superfine-grinding on the physicochemical and antioxidant properties of Lycium ruthenicum Murray powders[J]. Powder Technology,2020,372:68−75. doi:  10.1016/j.powtec.2020.05.097
    [7] Ni W H, Gao T T, Wang H L, et al. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan Plateau indigenous medicinal plants[J]. Journal of Ethnopharmacology,2013,150(2):529−535. doi:  10.1016/j.jep.2013.08.055
    [8] 曹茸茸. 黑果枸杞抗运动疲劳作用研究[D]. 兰州: 甘肃中医药大学, 2018.

    Cao R R. Study on the anti-fatigue effects of Lycium ruthenium[J]. Lanzhou: Gansu University of Chinese Medicine, 2018.
    [9] Zhang G, Chen S S, Zhou W, et al. Anthocyanin composition of fruit extracts from Lycium ruthenicum and their protective effect for gouty arthritis[J]. Industrial Crops and Products,2019,129:414−423. doi:  10.1016/j.indcrop.2018.12.026
    [10] Luo Y, Fang J L, Yuan K, et al. Ameliorative effect of purified anthocyanin from Lycium ruthenicum on atherosclerosis in rats through synergistic modulation of the gut microbiota and NF-κB/SREBP-2 pathways[J]. Journal of Functional Foods,2019,59:223−233. doi:  10.1016/j.jff.2019.05.038
    [11] 林丽, 李进, 李永洁, 等. 黑果枸杞花色苷对氧化低密度脂蛋白损伤血管内皮细胞的保护作用[J]. 中国药学杂志,2013,48(8):606−611. [Lin L, Li J, Li Y J, et al. Protective effects of Lycium ruthenicum anthocyanins on the vascular endothelial cells with oxidative injury by oxidized low-density lipoprotein in vitro[J]. Chinese Pharmaceutical Journal,2013,48(8):606−611.
    [12] Wang H Q, Li J N, Tao W W, et al. Lycium ruthenicum studies: Molecular biology, phytochemistry and pharmacology[J]. Food Chemistry,2018,240:759−766. doi:  10.1016/j.foodchem.2017.08.026
    [13] 张媛媛, 管棣, 谢青兰, 等. 黄酮体外抗氧化作用研究[J]. 中成药,2007,29(3):342−345. [Zhang Y Y, Guan D, Xie Q L, et al. Antioxidative effect of xanthones in vitro[J]. Chinese Traditional Patent Medicine,2007,29(3):342−345. doi:  10.3969/j.issn.1001-1528.2007.03.009
    [14] 李淑珍. 黑果枸杞总黄酮制备工艺优化和抗氧化、降血脂活性及成分研究[D]. 乌鲁木齐: 新疆师范大学, 2009.

    Li Shuzhen. Optimization preparating technology and activities of anti-oxidation, hypolipidemic and compositions of the total flavonoids from Lycium ruthenicum[D]. Wulumuqi: Xinjiang Normal University, 2009.
    [15] 段亚云, 李建颖, 程瑶, 等. 响应面法优化超声波-微波协同提取黑果枸杞叶总黄酮工艺[J]. 食品研究与开发,2018,39(21):100−105. [Duan Y Y, Li J Y, Cheng Y, et al. Optimization of ultrasonic-microwave synergy extraction of total flavonoids from Lycium ruthenicum leaves by response surface methodology[J]. Food Research and Development,2018,39(21):100−105. doi:  10.3969/j.issn.1005-6521.2018.21.017
    [16] 韩爱芝, 白红进, 耿会玲. 响应面法优化超声辅助提取黑果枸杞叶片总黄酮的工艺研究[J]. 西北林学院学报,2013,28(1):114−118. [Han A Z, Bai H J, Geng H L, et al. Optimization of ultrasound-assisted extraction of total flavonoids from Lycium ruthenicum leaves by response surface methodology[J]. Journal of Northwest Forestry University,2013,28(1):114−118. doi:  10.3969/j.issn.1001-7461.2013.01.22
    [17] 古丽巴哈尔·卡吾力, 高晓黎, 常占瑛, 等. 黑果枸杞总黄酮提取工艺优化及抗氧化活性[J]. 江苏农业科学,2017,45(22):213−217. [Gulibahaer Kawuli, Gao X L, Chang Z Y, et al. Study on optimization of extraction process of flavonoids from Lycium ruthenicum Murr. and its antioxidation activityxidation activity[J]. Jiangsu Agricultural Sciences,2017,45(22):213−217.
    [18] 李进, 李淑珍, 冯文娟, 等. 黑果枸杞叶总黄酮的体外抗氧化活性研究[J]. 食品科学,2010,31(13):259−262. [Li J, Li S Z, Feng W J, et al. In vitro antioxidant and free radical scavenging activities of total flavonoids from the leaves of Lycium ruthenicum Murr[J]. Food Science,2010,31(13):259−262.
    [19] 李淑珍, 李进. 黑果枸杞黄酮降血脂作用[J]. 时珍国医国药,2012,23(5):1072−1074. [Li S Z, Li J. Hypolipidemic activity of the total flavonoids from Lycium ruthenicum Murr[J]. Lishizhen Medicine and Materia Medica Research,2012,23(5):1072−1074. doi:  10.3969/j.issn.1008-0805.2012.05.009
    [20] 李淑珍, 李进. 黑果枸杞叶黄酮降血脂及抗氧化活性的研究[J]. 北方药学,2011,8(11):23−24. [Li S Z, Li J. Study on hypolipidemic and antioxidant activity of the total flavonoids from Lycium ruthenicum Murr

    J]. Journal of North Pharmacy,2011,8(11):23−24.
    [21] 艾克山·吾拉木, 谭扬扬, 古丽巴哈尔·卡吾力. 黑果枸杞中总黄酮的降脂活性研究[J]. 新疆医科大学学报,2019,42(8):1063−1067. [Aikeshan Wulamu, Tan Y Y, Gulibahaer Kawuli. Study on the lipid-lowering activity of total flavonoids in Lycium ruthenicum Murr[J]. Journal of Xinjiang Medical University,2019,42(8):1063−1067. doi:  10.3969/j.issn.1009-5551.2019.08.022
    [22] 艾克山·吾拉木. 黑果枸杞总黄酮分离纯化及其降脂、抗肝癌活性初步研究[D]. 乌鲁木齐: 新疆医科大学, 2020.

    Aikeshan Wulamu. Preliminary study on isolation and purification of total flavonoids from Lycium ruthenicum Murr. and its lipid-lowering and antihepatocarcinogenic activity[D]. Wulumuqi: Xinjiang Medical University, 2020.
    [23] 唐远江, 余波, 刘镜, 等. 运用Plackett-Burnman设计和Box-Behnken-响应面法优化地榆没食子酸提取工艺[J]. 贵州农业科学,2019,47(4):131−135. [Tang Y J, Yu B, Liu J, et al. Extraction optimization of gallic acid from Sanguisorba officinalis by Plackett-Burnman design and Box-Behnken response surface methodology[J]. Guizhou Agricultural Sciences,2019,47(4):131−135. doi:  10.3969/j.issn.1001-3601.2019.04.029
    [24] 管志美, 彭艳梅, 王银, 等. 基于Plackett-Burnman设计和Box-Behnken效应面法优化南宝戒毒清胶囊提取工艺[J]. 中药与临床,2018,9(5):20−24. [Guan Z M, Peng Y M, Wang Y, et al. Study on the extraction technology of Nanbaojieduqing capsule by Plackett-Burman design and Box-Behnken design-response surface methodology[J]. Pharmacy and Clinics of Chinese Materia Medica,2018,9(5):20−24.
    [25] 武芸, 马世荣, 王春林, 等. 大叶藜叶中总黄酮含量的测定[J]. 安徽农业科学,2015,43(34):164−165. [Wu Y, Ma S R, Wang C L, et al. Determination of total flavone in the leaf of Chenopodium hybridum L doi:  10.3969/j.issn.0517-6611.2015.34.061

    J]. Journal of AnhuiAgricultural Sciences,2015,43(34):164−165. doi:  10.3969/j.issn.0517-6611.2015.34.061
    [26] Pavlić B, Kaplan M, Bera O, et al. Microwave-assisted extraction of peppermint polyphenols artificial neural networks approach[J]. Food and Bioproducts Processing,2019(118):258−269.
    [27] Sarikurkcy C, Tepe B, Semiz D K, et al. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey[J]. Food and Chemical Toxicology,2010(48):1230−1233.
    [28] 胡春, 丁霄霖. 黄酮类化合物在不同氧化体系中的抗氧化作用研究[J]. 食品与发酵工业,1996(3):46−53. [Hu C, Ding X L. Anitoxidant effect of flavonoid in different oxidation systems[J]. Food and Ferrnentation Industries,1996(3):46−53. doi:  10.3321/j.issn:0253-990X.1996.03.009
    [29] 李铉军, 崔胜云. 抗坏血酸清除DPPH自由基作用机理[J]. 食品科学,2011,32(1):86−90. [Li X J, Cui S Y. DPPH radical scavenging mechanism of ascorbic acid[J]. Food Science,2011,32(1):86−90.
    [30] 李兆君, 丁润梅. 宁夏枸杞与黑果枸杞总黄酮含量及抗自由基活性的比较研究[J]. 食品研究与开发,2014,35(12):39−41. [Li Z J, Ding R M. Comparative studies the content of total flavonoids and anti-free radical between Ningxia wolfberry and black wolfberry[J]. Food Research and Development,2014,35(12):39−41.
  • 加载中
图(5) / 表(9)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。