黄原胶对扁桃仁蛋白质乳化特性的影响

徐玮键 王炜清 余雄伟 付琴利 陈历水 李述刚

徐玮键,王炜清,余雄伟,等. 黄原胶对扁桃仁蛋白质乳化特性的影响[J]. 食品工业科技,2021,42(20):76−85. doi:  10.13386/j.issn1002-0306.2021010122
引用本文: 徐玮键,王炜清,余雄伟,等. 黄原胶对扁桃仁蛋白质乳化特性的影响[J]. 食品工业科技,2021,42(20):76−85. doi:  10.13386/j.issn1002-0306.2021010122
XU Weijian, WANG Weiqing, YU Xiongwei, et al. Effect of Xanthan Gum on the Emulsifying Properties of Almond Kernel Protein[J]. Science and Technology of Food Industry, 2021, 42(20): 76−85. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010122
Citation: XU Weijian, WANG Weiqing, YU Xiongwei, et al. Effect of Xanthan Gum on the Emulsifying Properties of Almond Kernel Protein[J]. Science and Technology of Food Industry, 2021, 42(20): 76−85. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010122

黄原胶对扁桃仁蛋白质乳化特性的影响

doi: 10.13386/j.issn1002-0306.2021010122
基金项目: 国家自然科学基金会(31760477);合肥工业大学人才引进启动经费;武汉旭东食品有限公司企合作重大项目(2018/05-2023/06);湖北良品铺子食品工业有限公司校企合作重大项目(2020/01-2024/12)
详细信息
    作者简介:

    徐玮键(1997−),男,硕士研究生,研究方向:食品蛋白质化学与营养,E-mail:18265919759@163.com

    通讯作者:

    李述刚(1979−),男,博士,教授,研究方向:食品蛋白质化学与营养,E-mail:lishugang2010@163.com

  • 中图分类号: TS255.1

Effect of Xanthan Gum on the Emulsifying Properties of Almond Kernel Protein

  • 摘要: 扁桃仁蛋白质(Almond protein isolate,API)营养丰富,是一种重要的植物蛋白质资源,而乳化性差是一直困扰其开发应用的一个重要问题,为提高其乳化特性,本试验以扁桃仁分离蛋白质为研究对象,探讨了黄原胶(Xanthan gum,XG)对其乳化特性的影响。结果表明:XG的添加可使其复合乳液液滴直径更小且分布更均匀,即在XG添加量为0%~0.25%时,其乳液黏度从5.9 mPa·s增加至77.5 mPa·s,表面张力由13.1 mN/m降低至5.6 mN/m,界面吸附能力增强,乳液电位绝对值由29.0 mV增加到54.4 mV。尤其是XG添加量为0.2%时,API-XG乳液不仅具有较好的热稳定性和耐盐性,而且其储藏及冻融循环稳定性优良。实验研究有效提升了API的乳化性,为其在食品、化工等领域的应用提供了良好的技术支撑。
  • 图  1  多糖/蛋白质筛选效果图

    Figure  1.  Effect picture of polysaccharide/protein screening

    注:图中字母a:明胶;b:乳糖;c1:卡拉胶;c2:卡拉胶 pH3.5;d:琼脂;e:海藻酸钠;f:壳聚糖;g:魔芋胶;h:葡萄糖;I:阿拉伯胶;j:黄原胶;k:菊粉;l1:CMC 0.7;l2:CMC 0.9;l3:CMC 1.2。

    图  2  API、API-XG乳液界面张力随时间的变化

    Figure  2.  Changes of surface tension of API, API-XG emulsion with time

    图  3  XG添加量对API乳液粒径分布(A),D[4, 3]与ζ-电位(B)的影响

    Figure  3.  Effect of XG concentration on API emulsion particle size distribution(A), D [4, 3] and zeta potential(B)

    注:大写、小写字母分别表示同一指标不同条件下差异显著(P<0.05)。

    图  4  XG添加量对API乳液黏度的影响

    Figure  4.  Effect of XG concentration on API emulsion viscosity

    图  5  API乳液的应力扫描(A);在升温过程中0.25%XG溶液储能模量(G′)和损耗模量(G′′)的变化(B)

    Figure  5.  Stress scanning of API emulsion (A); During the heating process, energy storage modulus (G′) and loss modulus (G′′) change of 0.25% XG solution (B)

    图  6  API、API-XG乳液储能模量(G′)和损耗模量(G′′)的变化

    Figure  6.  Energy storage modulus (G′) and loss modulus (G′′) changes of API, API-XG emulsion

    图  7  XG添加量对API乳液荧光微观结构的影响

    Figure  7.  Effect of XG addition on fluorescence microstructure of API emulsion

    图  8  乳液的25 ℃储藏稳定性

    Figure  8.  Storage stability of the emulsion at 25 ℃

    注:(A):API、API-XG乳液粒径;(B):API、API-XG乳液宏观图;图9同。

    图  9  乳液的60 ℃储藏稳定性

    Figure  9.  Storage stability of emulsion at 60 ℃

    图  10  热处理对乳液稳定性的影响

    Figure  10.  Effect of heat treatment on emulsion stability

    注:图B中各线自上至下代表的XG添加量分别为0.15%、0.1%、0.05%、0%;(A)乳液放置24 h后的表观形态;(B)粒径分布图;(C)体积平均粒径(D[4,3]);大写、小写字母分别表示0、24 h下不同XG浓度间差异显著(P<0.05);图11同。

    图  11  冻融循环对乳液稳定性的影响

    Figure  11.  Effect of freeze-thaw cycle on emulsion stability

    注:图A中各线自上至下代表的XG添加量分别为0.25%、0.2%、0.15%、0.1%、0.05%;(A)乳液冻融循环后的粒径分布图;(B)体积平均粒径(D[4,3]);(C)表观形态。

    图  12  Na+对乳液稳定性的影响

    Figure  12.  Influence of Na+ on emulsion stability

    注:图A中各线自上至下代表的Na+浓度分别为250、100、50、0 mmol/L ;Na+环境下乳液的粒径分布图(A);Zata-电位(B);层析指数(C);宏观图(D);图D中0、50、100、250表示Na+浓度,单位为mmol/L。

  • [1] 李芳, 孔令明, 杨清香, 等. 巴旦杏蛋白饮料的工艺优化及其稳定性研究[J]. 现代食品科技,2009,25(7):786−789. [Li F, Yang Q X, Sun L H, et al. Preparation and stability of Amygdalus communis L. protein beverage[J]. Modern Food Science and Technology,2009,25(7):786−789.
    [2] 申烨华, 张萍, 王高学, 等. 陕西扁桃仁的氨基酸和元素分析[J]. 西北大学学报(自然科学版),2007(1):59−62. [Shen Y H, Zhang P W, Wang G X, et al. Analysis of amino acids and elements in almond kernel in Shaanxi[J]. Journal of Northwest University (Natural Science Edition),2007(1):59−62.
    [3] 李述刚, 陆健康, 王萍, 等. 新疆南疆扁桃仁中蛋白质与脂类营养分析[J]. 中国油脂,2015,40(2):30−32. [Li S G, Lu J K, Wang P, et al. Nutritional analysis of protein and lipid of almond kernel in south Xinjiang[J]. China Oils and FATS,2015,40(2):30−32.
    [4] 寇凯. 长柄扁桃提取蛋白粉的制备与表征[D]. 陕西: 西北大学, 2015.

    Kou K. The preparation and characterization of extracted protein powder from Amygdalus pedunculatus Pall[D]. Shaanxi: Northwest University, 2015.
    [5] 赵翠, 田英姿, 英犁, 等. 新疆几种巴旦杏综合营养成分分析[J]. 现代食品科技,2016,32(2):262−268. [Zhao C, Tian Y Z, Ying L, et al. Comprehensive analysis of nutritional components in several Xinjiang paddan almond samples[J]. Modern Food Science and Technology,2016,32(2):262−268.
    [6] 石海娥. 植物蛋白饮品领跑饮料市场[J]. 光彩,2018(12):46−48. [Shi H E. Plant-based protein drinks lead the beverage market[J]. Brilliance,2018(12):46−48. doi:  10.3969/j.issn.1005-4049.2018.12.022
    [7] McClements D J, Jafari S M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review[J]. Advances in Colloid and Interface Science,2018,251:55−79. doi:  10.1016/j.cis.2017.12.001
    [8] 王炜清, 李秀婷, 周彬, 等. 贮藏条件对扁桃仁分离蛋白理化特性及消化特性的影响[J]. 食品与机械,2020,36(8):102−108, 146. [Wang W Q, Li X T, Zhou B, et al. Effects of storage conditions on physical and chemical characteristics of almond protein isolates[J]. Food & Machinery,2020,36(8):102−108, 146.
    [9] Kumar A, Rao K M, Han S S. Application of xanthan gum as polysaccharide in tissue engineering: A review[J]. Carbohydrate Polymers,2017,180:128−144.
    [10] GarcíA-Ochoa F, Santos V E, Casaset J A, et al. Xanthan gum: Production, recovery, and properties[J]. Biotechnology Advances,2000,18(7):549−579. doi:  10.1016/S0734-9750(00)00050-1
    [11] Liu Q, Lu Y, Han J C, et al. Structure-modification by moderate oxidation in hydroxyl radical-generating systems promote the emulsifying properties of soy protein isolate[J]. Food Structure,2015,6:21−28. doi:  10.1016/j.foostr.2015.10.001
    [12] Zhang X D, Wang J W, Yu G P, et al. Addition of anionic polysaccharides to improve the stability of rice bran protein hydrolysate-stabilized emulsions[J]. LWT-Food Science and Technology,2019,111:573−581. doi:  10.1016/j.lwt.2019.04.020
    [13] 邓欣伦. 核桃蛋白-多糖界面相互作用及其对乳浊液性质影响的研究[D]. 广州: 华南理工大学, 2016.

    Deng X L . Walnut protein-polysaccharide interactions at the oil/water interface: Effect on the properties of emulsion[D]. Guangzhou: South China University of Technology, 2016.
    [14] Chen H, Ji A G, Qiu S, et al. Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties[J]. Food Hydrocolloids,2018,76:173−176. doi:  10.1016/j.foodhyd.2016.12.004
    [15] Liu L Y, Zhao Q Z, Liu T X, et al. Dynamic surface pressure and dilatational viscoelasticity of sodium caseinate/xanthan gum mixtures at the oil-water interface[J]. Food Hydrocolloids,2007,25(5):921−927.
    [16] 邵云. 大豆蛋白稳定乳液的物化性质及油脂氧化稳定性研究[D]. 广州: 华南理工大学, 2014.

    Shao Y. Physicochemical properties and oxidation stability of oil-in-water emulsions stabilized by soy protein[D]. Guangzhou: South China University of Technology, 2014.
    [17] Cai X R, Du X F, Zhu G L, et al. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations[J]. Food Hydrocolloids,2020,105:105776. doi:  10.1016/j.foodhyd.2020.105776
    [18] Li X Y, Fang Y P, Al-Assaf S, et al. Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram[J]. Journal of Colloid and Interface Science,2012,28(27):10164−10176.
    [19] 刘瑞丹. 蛋清蛋白-黄原胶结构化油脂的构建与应用研究[D]. 无锡: 江南大学, 2019.

    Liu R D. Construction and application of egg white protein-xanthan gum structured oil[D]. Wuxi: Jiangnan University, 2019.
    [20] Thaiphanit S, Schleining G, Anprung P. Effects of coconut (Cocos nucifera L.) protein hydrolysates obtained from enzymatic hydrolysis on the stability and rheological properties of oil-in-water emulsions[J]. Food Hydrocolloids,2016,60:252−264. doi:  10.1016/j.foodhyd.2016.03.035
    [21] Chityala P K, Khouryieh H, Williams K, et al. Effect of xanthan/enzyme-modifified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions[J]. Food Chemistry,2016,212:332−340. doi:  10.1016/j.foodchem.2016.05.187
    [22] 龙肇. 蛋白质—多糖交互作用对高乳脂乳浊液稳定性的影响及作用机理研究[D]. 广州: 华南理工大学, 2014.

    Long B. Effect of protein-polysaccharide interactions on the stability of concentrated emulsions and its mechanism[D]. Guangzhou: South China University of Technology, 2014
    [23] Chang C H, Li X, Li J H, et al. Effect of enzymatic hydrolysis on characteristics and synergistic efficiency of pectin on emulsifying properties of egg white protein[J]. Food Hydrocolloids,2017,65:87−95. doi:  10.1016/j.foodhyd.2016.11.004
    [24] Yang X, Gong T, Li D, et al. Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan[J]. Carbohydrate Polymers,2019,226:115278. doi:  10.1016/j.carbpol.2019.115278
    [25] Yao X, Qlab C, Song M, et al. Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum[J]. Innovative Food Science & Emerging Technologies,2019,54:225−234.
    [26] Hu Z Y, Qiu L, Sun Y, et al. Improvement of the solubility and emulsifying properties of rice bran protein by phosphorylation with sodium trimetaphosphate[J]. Food Hydrocolloids,2019,96:288−299. doi:  10.1016/j.foodhyd.2019.05.037
    [27] Lopes I S, Michelon M, Forster T C, et al. Effect of chitosan size on destabilization of oil/water emulsions stabilized by whey protein[J]. Colloids and Surfaces A,2019,574:207−214. doi:  10.1016/j.colsurfa.2019.04.072
    [28] Aoki D, Decker E A, McClements D. Influence of environmental stresses on O/W emulsions stabilized by b-lactoglobulinepectin and β-lactoglobuline-pectine-chitosan membranes produced by the electrostatic layer-by-layer deposition technique[J]. Food Biophysics,2006,1(1):30−40. doi:  10.1007/s11483-005-9002-z
    [29] 万芝力. 大豆蛋白-甜菊糖苷相互作用及对界面主导食品体系的调控研究[D]. 广州: 华南理工大学, 2016.

    Wan Z L. Tunable soy protein-steviol glycoside interactions and their relationships with interface-dominated food systems[D]. Guangzhou: South China University of Technology, 2016.
  • 加载中
图(12)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  26
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 网络出版日期:  2021-09-01
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升