响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征

丁政宇 张士凯 何子杨 张启月 李来成 许方舟 吴澎

丁政宇,张士凯,何子杨,等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021,42(20):157−163. doi:  10.13386/j.issn1002-0306.2021010094
引用本文: 丁政宇,张士凯,何子杨,等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021,42(20):157−163. doi:  10.13386/j.issn1002-0306.2021010094
DING Zhengyu, ZHANG Shikai, HE Ziyang, et al. Optimization of Enzymatic Extraction Process of Insoluble Dietary Fiber from Polygonatum sibiricum Residue by Response Surface Methodology and Its Characterization[J]. Science and Technology of Food Industry, 2021, 42(20): 157−163. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010094
Citation: DING Zhengyu, ZHANG Shikai, HE Ziyang, et al. Optimization of Enzymatic Extraction Process of Insoluble Dietary Fiber from Polygonatum sibiricum Residue by Response Surface Methodology and Its Characterization[J]. Science and Technology of Food Industry, 2021, 42(20): 157−163. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010094

响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征

doi: 10.13386/j.issn1002-0306.2021010094
基金项目: 山东省科技特派员行动计划:泰山道地鸡头黄精良种培育与深加工技术成果转化示范与推广(2020KJTPY077)
详细信息
    作者简介:

    丁政宇(1997−),女,硕士研究生,研究方向:食品科学,E-mail:1030013513@qq.com

    通讯作者:

    吴澎(1972−),女,博士研究生,教授,研究方向:食品科学,E-mail:13954847828@163.com

  • 中图分类号: TS201.1

Optimization of Enzymatic Extraction Process of Insoluble Dietary Fiber from Polygonatum sibiricum Residue by Response Surface Methodology and Its Characterization

  • 摘要: 以黄精渣为原料,采用响应面优化酶法提取黄精渣不溶性膳食纤维(HIDF)。通过单因素实验研究料液比、木瓜蛋白酶浓度、木瓜蛋白酶酶解时间、α-淀粉酶浓度、α-淀粉酶酶解时间五种因素对HIDF得率的影响,并采用响应面(Box-Behnken)优化提取工艺参数;最后进行扫描电镜(SEM)、红外光谱分析(FTIR)和X射线衍射(XRD)观察以及功能性质测定。结果表明,最佳提取工艺为:料液比1:20 g/mL,木瓜蛋白酶浓度0.13%,木瓜蛋白酶酶解时间1.9 h,α-淀粉酶浓度0.29%,α-淀粉酶酶解时间2 h,HIDF得率为52.18%;HIDF的持水力、持油力和膨胀力分别为5.99±0.05 g/g、3.97±0.04 g/g和4.57±0.05 mL/g。综上,提取后的黄精膳食纤维具有较好的结构及物理性质,适合加工成功能性食品,可为提高黄精渣的利用率及进一步挖掘营养价值提供参考。
  • 图  1  各因素对HIDF得率影响

    Figure  1.  Influence of various factors on the yield of HIDF

    图  2  各因素交互作用对HIDF得率影响的响应面图

    Figure  2.  Response surface diagram of the influence of the interaction of various factors on the yield of HIDF

    图  3  HIDF的扫描电镜

    Figure  3.  Scanning electron microscopy of HIDF

    图  4  HIDF的红外光谱图

    Figure  4.  Infrared scanning polygonatum of IDF

    图  5  HIDF的X射线衍射谱图

    Figure  5.  X-ray diffraction pattern of HIDF

    表  1  Box-Behnken中心组合试验设计因素水平及编码

    Table  1.   Factor level and coding of Box-Behnken center combination test

    因素
    编码水平
    −101
    A 料液比(g/mL)1:151:201:25
    B 木瓜蛋白酶添加量(%)0.10.1250.15
    C 木瓜蛋白酶酶解时间(h)1.522.5
    D α-淀粉酶添加量(%)0.20.30.4
    E α-淀粉酶酶解时间(h)1.522.5
    下载: 导出CSV

    表  2  响应面分析结果

    Table  2.   Results of response surface analysis

    实验号ABCDEY得率(%)
    1−100−1049.06
    2−10−10048.00
    300−11047.25
    40001−144.91
    50110046.16
    60010143.59
    71010047.35
    80000053.29
    900−10−144.39
    100000053.35
    110101048.81
    121100050.71
    131000−145.51
    140000050.80
    150−101047.40
    160000052.82
    170−10−1047.76
    1810−10045.95
    191−100045.91
    20000−1−145.81
    21−1000144.91
    22−1100049.56
    230000052.42
    2400−10143.75
    25−1−100047.5
    260100−148.75
    2701−10049.58
    280000052.74
    290−100−145.56
    30−1000−146.00
    310−1−10045.26
    32001−1046.51
    33−1010045.87
    341001047.25
    350001144.00
    36100−1045.06
    370011045.35
    380010−143.57
    390−100144.71
    4000−1−1047.01
    410−110046.16
    42000−1145.15
    43−1001048.25
    440100147.6
    451000144.45
    46010−1050.20
    下载: 导出CSV

    表  3  响应面试验方差分析

    Table  3.   Variance analysis of response surface method

    方差来源平方和自由度均方FP显著性
    模型317.742015.8925.47<0.0001**
    A3.0313.034.850.037*
    B27.85127.8544.65<0.0001**
    C2.7512.754.40.0461*
    D0.710.71.120.3005
    E2.5112.514.030.0557
    AB1.8811.883.010.0951
    AC3.1213.124.990.0346*
    AD2.2512.253.610.0691
    AE2.25E-0412.25E-043.61E-040.985
    BC4.6714.677.480.0113*
    BD0.2710.270.430.5203
    BE0.02310.0230.0360.8509
    CD0.4910.490.790.3839
    CE0.1110.110.170.6796
    DE0.01610.0160.0250.8755
    A251.76151.7682.99<0.0001**
    B221.73121.7334.84<0.0001**
    C2121.721121.72195.14<0.0001**
    D257.44157.4492.08<0.0001**
    E2203.211203.21325.79<0.0001**
    残差15.59250.62
    失拟项11.22200.560.640.7831不显著
    误差4.3750.87
    总和333.3345
    注:**差异极显著(P<0.01),*差异显著(P<0.05)。
    下载: 导出CSV

    表  4  黄精渣中膳食纤维的功能性质测定

    Table  4.   Determination of functional properties of dietary fiber in Polygonatum sibiricum residue

    功能性质持水力(g/g)持油力(g/g)膨胀力(mL/g)
    测定结果5.99±0.053.97±0.044.57±0.05
    下载: 导出CSV
  • [1] Wang C F, Song R Z, Wei S Q, et al. Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties[J]. Lwt Food Science & Technology,2020,125:109220.
    [2] Xu Z H, Xiong X, Zeng Q Z, et al. Alterations in structural and functional properties of insoluble dietary fibers-bound phenolic complexes derived from lychee pulp by alkaline hydrolysis treatment[J]. Lwt Food Science & Technology,2020,127:109335.
    [3] Kranz S, Brauchla M, Slavin J L, Miller K. B. What do we know about dietary fiber intake in children and health? The effects of fiber intake on constipation, obesity, and diabetes in children[J]. Advances in Nutrition: An International Review Journal,2012,3:47−53. doi:  10.3945/an.111.001362
    [4] 狄志鸿, 杨善岩, 聂蓉蓉, 等. 膳食纤维降糖作用及机理研究进展[J]. 食品研究与开发,2014(20):138−141. [Di Z H, Yang S Y, Nie R G, et al. Research progress on the hypoglycemic effect and mechanism of dietary fiber[J]. Food research and development,2014(20):138−141. doi:  10.3969/j.issn.1005-6521.2014.20.035
    [5] 李琦, 曾凡坤, 华蓉, 等. 麦麸膳食纤维理化特性、制备方法及应用研究进展[J]. 食品工业科技,2020,41(17):352−357, 367. [Li Q, Zeng F K, Hua R, et al. Research progress on the physical and chemical properties, preparation methods and application of wheat bran dietary fiber[J]. Food Industry Technology,2020,41(17):352−357, 367.
    [6] Zhou X, Zhang Y S, Zhao Y, et al. An LC fingerprint study of Poria cocos (Schw.) Wolf[J]. Chrom,2009,69(11/12):1283−1288.
    [7] 仲兆金, 刘浚. 黄精有效成分三萜的研究进展[J]. 中成药,2011,23(1):58−62. [Zhong Z J, Liu J. Research progress on triterpenes, the effective constituents of Rhizoma Polygonati[J]. Chinese Patent Medicine,2011,23(1):58−62.
    [8] Lu J. P, Zhang J, Zhang Y. Z. The functional activities and application of Polygonatum sibiricum polysaccharides[J]. Journal of Food Safety & Quality,2013,4(1):273−278.
    [9] 陈小林, 南海珍, 徐志南. 红曲菌发酵黄精渣生产monacolin K的探索性研究[J]. 药学研究,2019,38(1):12−15. [Chen X L, Nan H Z, Xu Z N. Exploratory study on the production of monacolin K from the fermented polygonatum residues of Monascus[J]. Pharmaceutical Research,2019,38(1):12−15.
    [10] 杨显辉, 代培春, 曾磊, 等. 黄精渣膳食纤维功能面包配方的应用研究[J]. 轻工科技,2019,35(10):18−21. [Yang X H, Dai P C, Zeng L, et al. Application research on formula of functional bread with polygonatum slag dietary fiber[J]. Light Industry Science and Technology,2019,35(10):18−21.
    [11] 刘学成, 王文亮, 弓志青, 等. 茶树菇膳食纤维改性及理化性质研究[J]. 食品工业科技,2021,42(4):142−148. [Liu X C, Wang W L, Gong Z Q, et al. Study on the modification and physicochemical properties of dietary fiber of Agrocybe cylindrica[J]. Food Industry Science and Technology,2021,42(4):142−148.
    [12] 薛山, 刘泽明. 鹰嘴芒皮渣水不溶性膳食纤维提取工艺优化及理化性质测定[J]. 北方园艺,2019(7):114−121. [Xue S, Liu Z M. Optimization of extraction process and determination of physical and chemical properties of water-insoluble dietary fiber from oleracea bark residue[J]. Northern Horticulture,2019(7):114−121.
    [13] 曾庆梅, 杨毅, 殷允旭, 等. 梨渣水不溶性膳食纤维的提取工艺研究[J]. 食品科学,2008(8):275−278. [Zeng Q M, Yang Y, Yin Y X, et al. Study on the extraction technology of water-insoluble dietary fiber from pear residue[J]. Food Science,2008(8):275−278. doi:  10.3321/j.issn:1002-6630.2008.08.059
    [14] 唐小闲, 邱培生, 段振华, 等. 响应面法优化超声-微波辅助提取莲藕膳食纤维工艺研究[J]. 食品研究与开发,2019,40(6):132−139. [Tang X X, Qiu P S, Duan Z H, et al. Optimization of ultrasonic-microwave-assisted extraction of dietary fiber from lotus root by response surface methodology[J]. Food Research and Development,2019,40(6):132−139. doi:  10.3969/j.issn.1005-6521.2019.06.024
    [15] 郭赵瑞, 张小康, 周苗苗, 等. 白萝卜不溶性膳食纤维的酸法提取及其理化性质研究[J]. 保鲜与加工,2021,21(3):56−60. [Guo Z R, Zhang X K, Zhou M M, et al. Extraction of insoluble dietary fiber from white radish by acid method and its physical and chemical properties study[J]. Preservation and Processing,2021,21(3):56−60. doi:  10.3969/j.issn.1009-6221.2021.03.009
    [16] 高晓丽, 宿娅. 酶碱法提取梨渣水不溶性膳食纤维的研究[J]. 食品工程,2014(4):28−23. [Gao X L, Su Y. Study on the extraction of water-insoluble dietary fiber from pear residue by enzyme-alkali method[J]. Food Engineering,2014(4):28−23. doi:  10.3969/j.issn.1673-6044.2014.04.009
    [17] 谢三都, 陈惠卿, 周春兰, 等. 橄榄渣膳食纤维理化和体外吸附特性及结构表征[J]. 食品与机械,2019,35(10):29−34. [Xie S D, Chen H Q, Zhou C L, et al. Physical and chemical properties andin vitro adsorption characteristics and structural characterization of dietary fiber from olive pomace[J]. Food and Machinery,2019,35(10):29−34.
    [18] 杜晓静, 白新鹏, 姜泽放, 等. 脱脂椰蓉可溶性膳食纤维制备工艺及单糖组成和理化特性分析[J]. 食品科学,2019,40(2):245−251. [Du X J, Bai X P, Jiang Z F, et al. Preparation technology of defatted coconut soluble dietary fiber and analysis of monosaccharide composition and physical and chemical properties[J]. Food Science,2019,40(2):245−251. doi:  10.7506/spkx1002-6630-20180118-250
    [19] Chen H M, Fu X, L uo, Z G. Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water[J]. Food Chemistry,2015,168:302−310. doi:  10.1016/j.foodchem.2014.07.078
    [20] 周丽珍, 孙海燕, 刘冬, 等. 改性方法对豆渣膳食纤维的结构影响研究[J]. 食品科技,2011,36(1):143−147. [Zhou L Z, Sun H Y, Liu D, et al. Research on the influence of modification methods on the structure of soybean dregs dietary fiber[J]. Food Science and Technology,2011,36(1):143−147.
    [21] Zhang Y, Qi J R, Zeng W Q, et al. Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment[J]. Food Chemistry,2019,311:125873.
    [22] Alba K, Macnaughtan W, Laws A P, et al. Fractionation and characterisation of dietary fibre from blackcurrant pomace[J]. Food Hydrocolloids,2018,81:398−408. doi:  10.1016/j.foodhyd.2018.03.023
    [23] 任雨离, 刘玉凌, 何翠, 等. 微波和微粉碎改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业,2017,43(8):145−150. [Ren Y L, Liu Y L, He C, et al. The influence of microwave and micro-pulverization on the properties and structure of dietary fiber from bamboo shoots[J]. Food and Fermentation Industries,2017,43(8):145−150.
    [24] Lin Y, Wang H, Rao W, et al. Structural characteristics of dietary fiber (Vigna radiata L. hull) and its inhibitory effect on phospholipid digestion as an additive in fish floss[J]. Food Control,2019,98:74−81. doi:  10.1016/j.foodcont.2018.11.016
    [25] 吴长玲, 陈鹏, 李顺秀, 等. 空化射流条件下豆渣不溶性膳食纤维结构与功能性研究[J]. 农业机械学报,2021,52(3):350−356. [Wu C L, Chen P, Li S X, et al. Effect of cavitation jets on structure and function of okara insoluble dietary fiber[J]. Transactions of the Chinese Society of Agricultural Machinery,2021,52(3):350−356. doi:  10.6041/j.issn.1000-1298.2021.03.039
    [26] 陈秉彦, 林晓姿, 李维新, 等. 高能机械处理方法对大豆不溶性膳食纤维结构及理化特性的影响[J]. 食品工业科技,2020,41(17):32−36, 44. [Chen B Y, Lin X Z, Li W X, et al. Effects of high-energy mechanical processing methods on the structure and physical and chemical properties of soybean insoluble dietary fiber[J]. Science and Technology of Food Industry,2020,41(17):32−36, 44.
    [27] 周贺霞, 刘菲, 王兴敏, 等. 超声波辅助酶法提取地瓜渣中不可溶性膳食纤维工艺研究[J]. 食品与发酵科技,2020,56(1):1−6. [Zhou H X, Liu F, Wang X M, et al. Ultrasonic-assisted enzymatic extraction of insoluble dietary fiber from sweet potato residues[J]. Food and Fermentation Science & Technology,2020,56(1):1−6. doi:  10.3969/j.issn.1674-506X.2020.01.001
    [28] 钟雅云, 杨敏, 何沁峰, 等. 海带与小麦麸皮由来不溶性膳食纤维的酶辅助提取及其功能特性比较[J]. 中国食品学报,2019,19(11):124−131. [Zhong Y Y, Yang M, He Q F, et al. Enzyme-assisted extraction of insoluble dietary fiber derived from kelp and wheat bran and comparison of their functional characteristics[J]. Chinese Journal of Food Science,2019,19(11):124−131.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  26
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升