全自动测汞仪和原子荧光光谱仪测定竹荪中总汞含量不确定度的比较

刘康书 罗天林 梁艺馨

刘康书,罗天林,梁艺馨. 全自动测汞仪和原子荧光光谱仪测定竹荪中总汞含量不确定度的比较[J]. 食品工业科技,2021,42(20):242−247. doi:  10.13386/j.issn1002-0306.2021010064
引用本文: 刘康书,罗天林,梁艺馨. 全自动测汞仪和原子荧光光谱仪测定竹荪中总汞含量不确定度的比较[J]. 食品工业科技,2021,42(20):242−247. doi:  10.13386/j.issn1002-0306.2021010064
LIU Kangshu, LUO Tianlin, LIANG Yixin. Comparison of Uncertainty Evaluation for the Determination of Mercury Content in Dictyophora by Automatic Mercury Analyzer and Atomic Fluorescence Spectrometer[J]. Science and Technology of Food Industry, 2021, 42(20): 242−247. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010064
Citation: LIU Kangshu, LUO Tianlin, LIANG Yixin. Comparison of Uncertainty Evaluation for the Determination of Mercury Content in Dictyophora by Automatic Mercury Analyzer and Atomic Fluorescence Spectrometer[J]. Science and Technology of Food Industry, 2021, 42(20): 242−247. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010064

全自动测汞仪和原子荧光光谱仪测定竹荪中总汞含量不确定度的比较

doi: 10.13386/j.issn1002-0306.2021010064
详细信息
    作者简介:

    刘康书(1984−),女,硕士,高级工程师,研究方向:进出口食品、化妆品理化分析研究,Email:liukangshu0416@sina.com

  • 中图分类号: O657.3

Comparison of Uncertainty Evaluation for the Determination of Mercury Content in Dictyophora by Automatic Mercury Analyzer and Atomic Fluorescence Spectrometer

  • 摘要: 采用全自动测汞仪和原子荧光光谱仪分别测定了竹荪中总汞的含量。通过建立数学模型,全面地分析不确定度的主要来源,计算出不确定度的各个分量,得出合成不确定度和扩展不确定度,并对评估结果进行比较。结果表明:当总汞的测定结果为0.050 mg/kg时,两种方法的扩展不确定度分别为0.006、0.002 mg/kg(k=2)。本方法可为今后采用全自动测汞仪和原子荧光光谱仪测定食用菌中总汞的不确定度评估提供参考。
  • 表  1  全自动测汞仪的升温程序

    Table  1.   Temperature rising program of automatic mercury analyzer

    步骤控制温度(℃)升温时间(min)恒温时间(min)
    120011
    2200/1
    37003/
    4700/1.5
    下载: 导出CSV

    表  2  原子荧光光谱仪的工作条件

    Table  2.   Operation conditions of atomic fluorescence spectrometer

    元素灯负高压(V)灯电流(mA)载气流量(mL/min)辅助气流量(mL/min)测量方式信号类型
    Hg24040500600标准曲线法峰面积
    下载: 导出CSV

    表  3  标准溶液配制过程中量具引入的不确定度

    Table  3.   Uncertainty resulting from the preparation of standard solution by measuring instruments

    方法量具最大允差次数标准不确定度相对标准不确定度
    全自动测汞仪法100 mL单标线容量瓶(A级)±0.1 mL30.041urel(V1)=0.00041
    10 mL单标线吸量管(A级)±0.02 mL10.012urel(V2)=0.0012
    20~200 µL移液器±1.5%20.0087urel(V3)=0.044
    500~5000 µL移液器±0.5%60.0029urel(V4)=0.00058
    原子荧光法100 mL单标线容量瓶(A级)±0.1 mL80.041urel(V1)=0.00041
    500~5000 µL移液器±0.5%70.0029urel(V1)=0.00058
    下载: 导出CSV

    表  4  标准溶液配制过程中温度变化引入的不确定度

    Table  4.   Uncertainty resulting from the preparation of standard solution by temperature variation

    方法量具体积(mL)标准不确定度相对标准不确定度
    全自动测汞仪法100 mL单标线容量瓶(A级)1006.06×10-2urel(T1)=6.06×10-4
    10 mL单标线吸量管(A级)106.06×10-3urel(T2)=6.06×10-4
    20~200 µL移液器0.053.03×10-5urel(T3)=6.06×10-4
    20~200 µL移液器0.16.06×10-5urel(T4)=6.06×10-4
    0.5~5 mL移液器0.53.03×10-4urel(T5)=6.06×10-4
    0.5~5 mL移液器1.06.06×10-4urel(T6)=6.06×10-4
    0.5~5 mL移液器2.01.21×10-3urel(T7)=6.06×10-4
    原子荧光法100 mL单标线容量瓶(A级)1006.06×10-2urel(T1)=6.06×10-4
    0.1~1 mL移液器1.06.06×10-4urel(T2)=6.06×10-4
    0.5~5 mL移液器0.53.03×10-4urel(T3)=6.06×10-4
    0.5~5 mL移液器1.06.06×10-4urel(T4)=6.06×10-4
    0.5~5 mL移液器1.59.09×10-4urel(T5)=6.06×10-4
    0.5~5 mL移液器2.01.21×10-3urel(T6)=6.06×10-4
    0.5~5 mL移液器2.51.52×10-3urel(T7)=6.06×10-4
    下载: 导出CSV

    表  5  加标回收率引入的不确定度

    Table  5.   Uncertainty resulting from the recovery rate

    方法样品含量(mg/kg)回收率(%)平均回收率(%)相对标准偏差(%)标准不确定度t相对标准不确定度
    全自动测汞仪法$ {{\rm{\bar X}}}$= 0.052101.45 102.12101.780.740.00523.42U6rel(R)= 0.0051
    原子荧光法$ {{\rm{\bar X}}}'$= 0.05090.35% 92.11%91.23%1.24%0.00889.97U6rel(R′)= 0.0096
    下载: 导出CSV

    表  6  曲线拟合数据及不确定度

    Table  6.   Data for fitting calibration curve and uncertainty

    方法标准溶液峰高/峰面积线性回归方程相关系数残余标准误差相对标准不确定度
    全自动测汞仪法00.0028Y=0.0387X+0.01120.99960.0088U7rel(c)=0.025
    0.500.0141
    1.00.0416
    5.00.2073
    10.00.4008
    20.00.7846
    原子荧光法030.24Y=1554.1X+30.240.999826.60U7rel(c′)=0.007
    0.5821.0
    1.01609.3
    1.52382.5
    2.03111.2
    2.53911.8
    下载: 导出CSV

    表  7  样品重复测定数据及不确定度

    Table  7.   Data for repeated determination of samples and uncertainty

    方法测定次数样品含量(mg/kg)样品含量平均值(mg/kg)标准不确定度相对标准不确定度
    全自动测汞仪法10.0510.052U8(r)=0.00069U8rel(r)=0.013
    20.051
    30.053
    原子荧光法10.0480.050U8(r')=0.00098U8rel(r′)=0.020
    20.051
    30.051
    下载: 导出CSV
  • [1] 岳诚, 杨林累, 刘书畅等. 长裙竹荪研究进展综述[J]. 食药用菌,2018,26(6):354−357, 366. [Yue Cheng, Yang Linlei, Liu Shuchang, et al. Review on the research progress of Dictyophora indusiata[J]. Edible and Medicinal Mushrooms,2018,26(6):354−357, 366.
    [2] 蓝蔚青, 曹奕, 陈燕等. 棘托竹荪提取液对单增李斯特菌的抑制机理初步研究[J]. 食品工业科技,2015,36(14):152−155, 160. [Lan Weiqing, Cao Yi, Chen Yan, et al. Preliminary research on the antimicrobial mechanism of Dictyophora echinovolvata extracts againstListeria monocytogenes[J]. Science and Technology of Food Industry,2015,36(14):152−155, 160.
    [3] 徐耀. 红托竹荪不同部位多糖提取及体外抗氧化活性研究[J]. 食品工业科技,2012,33(24):350−352. [Xu Yao. Extraction technology and antioxidant activity of polysaccharides of different parts of Dictyophora rubrovalvata in vitro[J]. Science and Technology of Food Industry,2012,33(24):350−352.
    [4] 徐惠龙, 杨志坚, 郑金贵. 3种食用菌对高血脂症大鼠脂质代谢的影响[J]. 福建农林大学学报(自然科学版),2014,43(4):430−433. [Xu Huilong, Yang Zhijian, Zheng Jingui. Effects of three kinds of fungi on the lipid metabolism of hyperlipemia rats[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2014,43(4):430−433.
    [5] 颜梦秋, 田振, 冯娜等. 棘托竹荪发酵物的体外抗肿瘤活性[J]. 食用菌学报,2016,23(2):75−78. [Yan Mengqiu, Tian Zhen, Feng Na, et al. Inhibition of in vitro proliferation of selected cancer cell lines by extracts of Dictyophora echinovolvata mycelium and spent culture medium[J]. Acta Edulis Fungi,2016,23(2):75−78.
    [6] 熊川, 黄文丽, 张利等. 长裙竹荪多肽抗氧化及免疫调节作用[J]. 食品工业科技,2019,40(24):51−56, 61. [Xiong Chuan, Huang Wenli, Zhang Li, et al. Antioxidant and immunomodulatory effects of peptide from Dictyophora indusiata[J]. Science and Technology of Food Industry,2019,40(24):51−56, 61.
    [7] 中华人民共和国国家卫生和计划生育委员会. GB 2762-2017 食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社, 2017.

    National Health and Family Planning Commission of the People’s Republic of China. GB 2762-2017 National food safety standard limits of contaminants in food[S]. Beijing: Standards Press of China, 2017.
    [8] Sandrine M, Laurent N. Simultaneous analysis of 21 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation[J]. Journal of Food Composition and Analysis,2011,2(24):111−120.
    [9] Batista B L, Odrigues J L, Souza SSD, et al. Mercury speciation in seafood samples by LC-ICP -MS with a rapid ultrasound-assisted extraction procedure: application to the determination of mercury in Brazilian seafood samples[J]. Food Chemical,2011,126(4):2000−2004. doi:  10.1016/j.foodchem.2010.12.068
    [10] 中华人民共和国国家卫生和计划生育委员会. GB 5009.268-2016 食品安全国家标准 食品中多元素的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People’s Republic of China. GB 5009.268-2016 National food safety standard determination of multiple elements in food[S]. Beijing: Standards Press of China, 2016.
    [11] Chuyu Peng, Man He, Beiei Chen, et al. Magnetic sulfur-doped porous carbon for preconcentration of trace mercury in environmental water prior to ICP-MS detection[J]. The Analyst,2017,142(23):4570−4579. doi:  10.1039/C7AN01195D
    [12] Jian L, Goessler W, Irgolic K J. Mercury determination with ICP-MS: signal suppression by acids[J]. Fresenius’ Journal of Analytical Chemistry,2000,366(1):48−53. doi:  10.1007/s002160050010
    [13] Melita Kosanovic, Abdu Adem, Milan Jokanovic, et al. Simultaneous determination of cadmium, mercury, lead, arsenic, copper, and zinc in human breast milk by ICP-MS/microwave digestion[J]. Analytical Letters,2008,41(3):406−416. doi:  10.1080/00032710701862910
    [14] 张利俊, 满都呼, 那斯琴高娃等. 原子荧光法同时检测乳及乳制品中总砷、总汞方法的改进[J]. 中国乳品工业,2018,46(12):46−48. [Zhang Lijun, Man Duhu, Na Siqingaowa, et al. An improved determination method of total arsenic and total mercury simultaneously by atomic fluorescence spectroscopy in dairy products[J]. China Dairy Industry,2018,46(12):46−48. doi:  10.3969/j.issn.1001-2230.2018.12.011
    [15] Douglas G. da Silva, Lindomar A Portugal, Antonio M. Serra, et al. Determination of mercury in rice by MSFIA and cold vapour atomic fluorescence spectrometry[J]. Food Chemistry,2013,137(1-4):159−163. doi:  10.1016/j.foodchem.2012.10.019
    [16] Liwei Liu, Huaili Zheng, Chun Yang, et al. Matrix-assisted photochemical vapor generation for the direct determination of mercury in domestic wastewater by atomic fluorescence spectrometry[J]. Spectroscopy Letters,2014,47(8):604−610. doi:  10.1080/00387010.2013.833119
    [17] 曾云军, 周斌, 陈俊旭等. 测汞仪测定稻谷及其制品中总汞含量研究[J]. 粮油食品科技,2016,24(6):63−66. [Zeng Yunjun, Zhou Bin, Chen Junxu, et al. Determination of total mercury in paddy and products by mercury analyzer[J]. Science and Technology of Cereals, Oils and Foods,2016,24(6):63−66. doi:  10.3969/j.issn.1007-7561.2016.06.014
    [18] 陈岩, 杨慧, 王富华等. 测汞仪快速测定保健食品中的总汞含量[J]. 现代食品科技,2014,30(2):285−289. [Chen Yan, Yang Hui, Wang Fuhua, et al. The rapid determination of total mercury in health food by direct mercury analyzer[J]. Modern Food Science and Technology,2014,30(2):285−289.
    [19] 中华人民共和国国家卫生和计划生育委员会. GB 5009.17-2014 食品安全国家标准 食品中总汞和有机汞的测定[S]. 北京: 中国标准出版社, 2014.

    National Health and Family Planning Commission of the People’s Republic of China. GB 5009.17-2014 National food safety standard determination of total mercury and organic mercury in food[S]. Beijing: Standards Press of China, 2014.
    [20] 国家质量监督检验检疫总局. JJF1059.1-2012中华人民共和国国家计量技术规范 测量不确定度评定与表示[S]. 北京: 中国计量出版社, 2012.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. JJF 1059.1-2012 National metrological technical specifications of the people’s republic of china, evaluation and expression of uncertainty in measurement[S]. Beijing: Standards Press of China, 2012.
    [21] 国家市场监督管理总局. GB/T 27025-2019检测和校准实验室能力的通用要求[S]. 北京: 中国标准出版社, 2019.

    State Administration for Market Regulation. GB/T 27025-2019 General requirements for the competence of testing and calibration laboratories[S]. Beijing: Standards Press of China, 2019.
    [22] 中国合格评定国家认可委员会. CNAS-GL01-G003: 2019测量不确定度的要求[S]. 北京: 中国标准出版社, 2019.

    China National Accreditation Service for Conformity Assessment. CNAS-CL01-G003: 2019 Requirement for measurement uncertainty[S]. Beijing: Standards Press of China, 2019.
    [23] 中国合格评定国家认可委员会. CNAS-GL006: 2019化学分析中不确定度的评估指南[S]. 北京: 中国标准出版社, 2019.

    China National Accreditation Service for Conformity Assessment. CNAS-GL006: 2019 Guidance on evaluating the uncertainty in chemical analysis[S]. Beijing: Standards Press of China, 2019.
    [24] 陈利平, 张宏雨, 刘敏等. 原子荧光法测定苹果中总汞和总砷含量不确定度评定[J]. 食品工业科技,2020,41(1):213−218. [Chen Liping, Zhang Hongyu, Liu Min, et al. Evaluating uncertainty in determination of total arsenic and total mercury in apple by atomic fluorescence spectrometry[J]. Science and Technology of Food Industry,2020,41(1):213−218.
    [25] Alimonti A, Forte G, Spezia S, et al. Uncertainty of inductively coupled plasma mass spectrometry based measurements: an application to the analysis of urinary barium, cesium, antimony and tungsten[J]. Rapid Commun Mass Spectrom,2005,19(21):3131−3138. doi:  10.1002/rcm.2180
    [26] 张建辉, 张继红, 张丽等. ICP-MS法和石墨炉原子吸收法测定大米中镉含量不确定度评估的比较[J]. 食品科学,2016,37(18):185−189. [Zhang Jianhui, Zhang Jihong, Zhang Li, et al. Comparative study of uncertainty evaluation for the determination of cadmium content in rice by inductively coupled plasma-mass spectrometry and graphite furnace atomic absorption spectrometry[J]. Food Science,2016,37(18):185−189. doi:  10.7506/spkx1002-6630-201618030
    [27] Fujiwara M, Koki H, Naoko N, et al. Evaluation of measurement uncertainty in the elemental analysis of sintered silicon carbide using laser ablation in liquid—inductively coupled plasma mass spectrometry with external calibration and isotope dilution[J]. Accred Qual Assur,2019,24(5):329−339. doi:  10.1007/s00769-019-01389-5
    [28] 谭秀慧, 杨洪生, 任娣等. GFAAS法和ICP-MS法测定水产品中铅含量的不确定度评定[J]. 食品研究与开发,2020,41(7):182−187. [Tan Xiuhui, Yang Hongsheng, Ren Di, et al. Uncertainty evaluation for determination of lead in aquatic products by GFAAS and ICP-MS[J]. Food Research and Development,2020,41(7):182−187.
    [29] 毛永杨, 杨桐, 苏涛等. 高效液相色谱-原子荧光光谱联用法测定牛肝菌中无机汞、甲基汞、乙基汞的不确定度评估[J]. 食品科学,2017,38(24):272−277. [Mao Yongyang, Yang Tong, Su Tao, et al. Uncertainty evaluation of for determining inorganic mercury, methyl mercury and ethyl mercury in boletus by high performance liquid chromatography combined with atomic fluorescence spectrometry[J]. Food Science,2017,38(24):272−277. doi:  10.7506/spkx1002-6630-201724044
    [30] 国家质量监督检验检疫总局. JJF1135-2005中华人民共和国国家计量技术规范 化学分析测量不确定度评定[S]. 北京: 中国计量出版社, 2005.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. JJF 1135-2005 National metrological technical specifications of the people’s republic of china, evaluation of uncertainty in chemical analysis measurement[S]. Beijing: Standards Press of China, 2005.
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  22
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 网络出版日期:  2021-09-01
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升