不同冻藏时间的猪肉品质比较及其变化机制研究

马志强 钟艳 魏雪林 王力均 黄玉坤 陈祥贵 杨潇

马志强,钟艳,魏雪林,等. 不同冻藏时间的猪肉品质比较及其变化机制研究[J]. 食品工业科技,2021,42(18):48−56. doi:  10.13386/j.issn1002-0306.2021010063
引用本文: 马志强,钟艳,魏雪林,等. 不同冻藏时间的猪肉品质比较及其变化机制研究[J]. 食品工业科技,2021,42(18):48−56. doi:  10.13386/j.issn1002-0306.2021010063
MA Zhiqiang, ZHONG Yan, WEI Xuelin, et al. Comparison of Pork Quality in Different Frozen Storage Time and Its Change Mechanism[J]. Science and Technology of Food Industry, 2021, 42(18): 48−56. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010063
Citation: MA Zhiqiang, ZHONG Yan, WEI Xuelin, et al. Comparison of Pork Quality in Different Frozen Storage Time and Its Change Mechanism[J]. Science and Technology of Food Industry, 2021, 42(18): 48−56. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010063

不同冻藏时间的猪肉品质比较及其变化机制研究

doi: 10.13386/j.issn1002-0306.2021010063
基金项目: 四川省科技厅重点研发(2020YFN0153,2020YFN0151)
详细信息
    作者简介:

    马志强(1992−),男,硕士研究生,研究方向:食品营养与安全,E-mail:943861429@qq.com

    通讯作者:

    杨潇(1981−),男,博士,教授,研究方向:食品营养与安全,E-mail:13076014204@163.com

  • 中图分类号: TS205.7

Comparison of Pork Quality in Different Frozen Storage Time and Its Change Mechanism

  • 摘要: 为了解冷冻储藏期间猪肉品质变化的原因及其可能的机制,分别比较了冻藏4个月和冻藏8个月猪肉的持水性、质构、颜色等品质指标;并通过低场核磁(low-field nuclear magnetic resonance,LF-NMR)检测了猪肉样品中水分的种类和分布,探索了不同水分分布与持水性、质构间的相关性;通过电子鼻和基于高分辨质谱的脂质组学分析探讨了猪肉风味成分的变化以及引起变化的特征物质的种类。结果表明,与冻藏4个月的猪肉相比,冻藏8个月猪肉的品质明显劣变,而其肌纤维形貌更加松散、水分弛豫时间延后、峰面积减小。而猪肉的持水性和质构等品质指标与冻藏时间存在正相关性,与水分弛豫时间和面积之间存在负相关性,也说明经过长时间冻藏,猪肉中结合水和不易流动水的迁移与损失可能是引起猪肉质构品质发生劣变的主要原因。通过对猪肉电子鼻数据的偏最小二乘回归分析(PLS-DA)发现,经过长期冻藏后猪肉的风味成分也明显改变,发生变化的风味成分主要为烷烃、芳香类成分、弱极性化合物、甲烷和醇类化合物。而通过高分辨质谱鉴定出5种与脂质氧化相关的差异化合物,推测经过长时间冻藏后,猪肉风味物质发生的明显变化可能是由于肌肉组织中的脂类被氧化造成的。
  • 图  1  不同冻藏时间样品扫描电镜结构图

    Figure  1.  SEM structure diagram of samples during different frozen storage time

    注:A-冻藏4个月样品,50×;B-冻藏4个月样品,500×;C-冻藏8个月样品,50×;D-冻藏8个月样品,500×。

    图  2  不同冻藏时间猪肉的二维T2弛豫时间图谱

    Figure  2.  Diagram of T2 relaxation time of pork during different freezing storage time

    图  3  不同冻藏时间猪肉的MRI图谱

    Figure  3.  MRI of pork during different freezing time

    注:A0、A1、A2分别代表同一块样品在同一方向间隔3 mm下的切面图。

    图  4  不同冻藏时间猪肉电子鼻数据的PLS-DA分析(n=7)

    Figure  4.  PLS-DA analysis of pork electronic nose data during different frozen storage time (n=7)

    注:(a)不同冻藏时间猪肉电子鼻数据的PLS-DA散点图;(b)不同冻藏时间猪肉电子鼻数据的PLS-DA的传感器VIP值。

    图  5  不同冻藏时间猪肉代谢物质数据heatmap图(n=6)

    Figure  5.  Heat map of pork metabolite data during different frozen storage time (n=6)

    注:C表示冻藏4个月组;F表示冻藏8个月组。

    图  6  不同冻藏时间猪肉质谱数据PLS-DA结果(n=6)

    Figure  6.  PLS-DA results of mass spectrometry data of pork during different frozen storage time (n=6)

    注:a.不同冻藏时间猪肉化合物的PLS-DA散点图;b.不同冻藏时间猪肉化合物的PLS-DA VIP值;C表示冻藏4个月组,F表示冻藏8个月组。

    表  1  梯度洗脱程序

    Table  1.   Gradient elution procedures

    时间(min)流动相A(%)
    (0.1%甲酸溶液)
    流动相B(%)
    (0.1%甲酸乙腈)
    0955
    19010
    58515
    158020
    257030
    355050
    361090
    45595
    50955
    下载: 导出CSV

    表  2  不同冻藏时间猪肉持水力测试结果(n=8)

    Table  2.   Test results of water holding capacity of pork during different frozen storage time(n=8)

    评价指标(%)冻藏4月组冻藏8月组
    冻融损失率5.99±1.17A18.25±3.20B
    滴落损失率5.48±1.10a9.95±1.74b
    离心损失率8.29±1.50A27.65±2.95B
    蒸煮损失率25.09±2.19A38.92±0.42B
    注:同一行中不同字母表示组间差异显著,不同大写字母表示在P<0.01水平上极显著相关;不同小写字母表示P<0.05水平上显著相关;表3~表4同。
    下载: 导出CSV

    表  3  不同冻藏时间猪肉质构测试结果(n=12)

    Table  3.   Pork texture test results during different frozen storage time (n=12)

    指标冻藏4月组冻藏8月组
    硬度(g)15042.26±93.26B14486.98±2408.73A
    弹性0.63±0.21A0.76±0.12B
    黏聚性0.48±0.060A0.74±0.044A
    胶着性732.04±137.15A10675.44±1963.26B
    咀嚼性(g)475.01±207.07A7913.56±492.63B
    回复性0.22±0.033A0.64±0.073A
    下载: 导出CSV

    表  4  不同冻藏时间猪肉颜色及pH测试结果(n=8)

    Table  4.   Pork color and pH test results during different frozen storage time (n=8)

    指标冻藏4月组冻藏8月组
    L*24.43±1.26a41.50±4.47b
    a*3.10±2.20a1.81±3.86a
    b*5.07±0.35a13.52±3.29b
    pH5.52±0.027a5.59±0.037b
    下载: 导出CSV

    表  5  不同冻藏时间猪背最长肌中3种状态水分的弛豫时间及峰面积变化

    Table  5.   Relaxation time and peak area changes of the three states of water in the longissimus dorsi muscle during different frozen storage time

    冻藏时间T20(ms)T21(ms)T22(ms)A20A21A22
    4个月0.965±0.000a175.510±18.505a947.350±28.127b106.524±8.981b2318.264±118.480b41.236±12.374a
    8个月1.294±0.185a232.288±19.583b613.244±61.930a93.148±24.157a1813.487±206.198a24.207±13.287a
    注:同一列中不同小写字母代表差异显著(P<0.05);A20、A21、A22分别代表T20、T21、T22的峰面积。
    下载: 导出CSV

    表  6  品质指标与影响因素间的相关性分析

    Table  6.   Correlation analysis between quality indicators and influencing factors

    相关系数r
    冻藏时间T20T21T23A20A21A22
    硬度0.915*0.915*−0.931*0.3280.219−0.909*−0.473
    黏着性−0.489−0.3030.3810.469−0.7850.873−0.105
    弹性0.3980.0020.1320.250−0.058−0.4200.313
    黏聚性0.6470.427−0.3770.1910.308−0.886*0.026
    胶着性0.896**0.853−0.8780.1990.327−0.950*−0.435*
    咀嚼性0.843*0.789−0.8130.0870.395−0.972*−0.403
    回复性0.818*0.762−0.7870.0380.420−0.963*−0.434
    滴落损失率0.8720.872−0.8150.439−0.111−0.658−0.648
    离心损失率0.956*0.956*−0.944*0.704−0.205−0.486−0.737
    蒸煮损失率0.996**0.996**−0.990**0.660−0.104−0.670−0.576
    冻融损失率0.994**0.994**−0.967**0.729−0.207−0.639−0.503
    注:**表示在P<0.01水平上极显著相关,*表示P<0.05水平上显著相关;A20、A21、A22代表对应水分的峰面积。
    下载: 导出CSV

    表  7  UPLC-Q-TOF分析冻藏不同时间猪肉代谢物生物标志物

    Table  7.   UPLC-Q-TOF analysis of biomarkers of metabolites in frozen pork during different time

    质荷比(m/z)精确质量数化学元素物质名称VIP值变化趋势
    (8个月VS.4个月)
    241.1286240.1222C10H16N4O3L-Anserine2.2166
    123.0555122.0480C6H6N2ONiacinamide1.4008
    742.5771741.5672C42H80NO7PPC(18:2(9Z,12Z)/P-16:0)2.7387
    744.5893743.5829C42H82NO7PPC(O-16:0/20:4(5E,8E,11E,14E))2.3396
    768.5877767.5829C44H82NO7PPC(O-16:0/20:4(5E,8E,11E,14E))2.2958
    注:“↑”、“↓”代表8个月组相对于4个月组物质的上调或下调。
    下载: 导出CSV
  • [1] 李芳菲, 王博, 石硕, 等. 低温胁迫肌原纤维蛋白结构和热稳定性的变化[J]. 中国食品学报,2019,19(3):232−241. [Li F F, Wang B, Wang S, et al. Pan nan change of protein structure and thermal stability of myofibrillar protein under cold stress[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(3):232−241.
    [2] 黄鸿兵, 徐幸莲, 周光宏. 冷冻贮藏对冻猪肉冰晶形态、TVB-N及TBARS的影响[J]. 食品工业科技,2008,2(2):117−119, 122. [Huang H B, Xu X L, Zhou G H. Effect of frozen storage on ice crystal, TVB-N and TBARS of pork muscle[J]. Science and Technology of Food Industry,2008,2(2):117−119, 122.
    [3] Gil M, Duma-Kocan P, Stanislawczyk R, et al. The effect of freezing storage on physical and chemical properties of wild boar meat[J]. Czech Journal of Food Sciences,2018,36(6):487−493.
    [4] Pomponio L, Ruiz-Carrascal J. Oxidative deterioration of pork during superchilling storage[J]. Journal of the Science of Food and Agriculture,2017,97(15):5211−5215. doi:  10.1002/jsfa.8403
    [5] 夏秀芳, 孔保华. 冻藏温度和时间对猪肉品质影响的研究[C]//北京: 中国机械工程学会包装与食品工程分会, 2010.

    Xia X F, Kong B H. The effects of freezing temperature and time on qualities of pork[C]//Beijing: Proceedings of the 2010 Annual Conference of Packaging and Food Engineering Branch, Chinese Society of Mechanical Engineering, 2010.
    [6] 李靖, 袁乙平, 刘婷, 等. 基于低场核磁共振技术的冷冻猪背最长肌品质变化研究[J]. 食品与机械,2019,35(5):149−155. [Li J, Yuan Y P, Liu T, et al. Research on the change of quality of pork longissimus dorsi during the frozen period based on low field nuclear magnetic resonance technology[J]. Food & Machinery,2019,35(5):149−155.
    [7] Kim H W, Miller D K, Yan F F, et al. Probiotic supplementation and fast freezing to improve quality attributes and oxidation stability of frozen chicken breast muscle[J]. Lwt-Food Science and Technology,2017,75(7):34−41.
    [8] Shen Q, Wang M, Tian J, et al. Effects of Chinese pickled and dried mustard on nutritional quality, sensory quality, and shelf life of steamed pork belly[J]. Food Science & Nutrition,2018,6(4):747−756.
    [9] 胡春辉, 徐青, 孙璇, 等. 几种典型扫描电镜生物样本制备[J]. 湖北农业科学,2016,55(20):5389−5392, 5402. [Hu C H, Xu Q, Sun X, et al. Several biological typical samples preparation methods of scanning electron microscope[J]. Hubei Agricultural Sciences,2016,55(20):5389−5392, 5402.
    [10] 常海军, 唐翠, 唐春红. 不同解冻方式对猪肉品质特性的影响[J]. 食品科学,2014,35(10):1−5. [Chang H J, Tang C, Tang C H. Effects of different thawing methods on pork quality[J]. Food Science,2014,35(10):1−5. doi:  10.7506/spkx1002-6630-201410001
    [11] Lakshmanan R, Piggott J R, Paterson A. Potential applications of high pressure for improvement in salmon quality[J]. Trends in Food Science & Technology,2003,14(9):354−363.
    [12] 戴志远, 崔雁娜, 王宏海. 不同冻藏条件下养殖大黄鱼鱼肉质构变化的研究[J]. 食品与发酵工业,2008,34(8):188−191. [Dai Z Y, Cui Y N, Wang H H. Changes of textural properties of cultured pseudosciaena crocea muscle under different frozen storage conditions[J]. Food & Fermentation Industries,2008,34(8):188−191.
    [13] Hattula T, Elfving K, Mroueh T, et al. Use of liquid smoke flavouring as an alternative to traditional flue gas smoking of rainbow trout fillets (Oncorhynchus mykiss)[J]. Lwt-Food Science & Technology,2001,34(8):521−525.
    [14] Daszkiewicz T, Lipowski T, Kubiak, et al. Effect of freezer storage on quality of M. longissimus lumborum from fallow deer (Dama dama L.)[J] South African Journal of Animal Science, 2017, 6(47): 834-841.
    [15] Stanislawczyk R, Rudy M, Gil M. The influence of frozen storage and selected substances on the quality of horse meat[J]. Meat Science,2019,155(10):74−78.
    [16] Lv W Q, Zhang M, Bhandari B, et al. Smart NMR method of measurement of moisture content of vegetables during microwave vacuum drying[J]. Food and Bioprocess Technology,2017,10(12):2251−2260. doi:  10.1007/s11947-017-1991-3
    [17] Fundo J F, Amaro A L, Madureira A R, et al. Fresh-cut melon quality during storage: An NMR study of water transverse relaxation time[J]. Journal of Food Engineering,2015,167(8):71−76.
    [18] 张驰, 阮征. 低场核磁共振(LF-NMR)及其成像技术(MRI)在食品应用中的研究进展[C]//广州: “健康中国2030·健康食品的安全与创新”学术研讨会暨2018年广东省食品学会年会, 2018: 119-125.

    Zhang C, Ruan Z. Research progress of low-field nuclear magnetic resonance research progress of low-field nuclear magnetic resonance[C]//Guangzhou: “Healthy China 2030: Safety and Innovation of Healthy Food” Academic Seminar and 2018 Annual Meeting of Guangdong Food Society, 2018: 119−125.
    [19] 姜晓文, 韩剑众. 生鲜肉品持水性的核磁共振研究[J]. 食品工业科技,2009,98(1):322−325. [Jiang X W, Han J Z. Research progress of water-holding capacity of fresh meat by LF-NMR[J]. Science and Technology of Food Industry,2009,98(1):322−325.
    [20] 闵连吉. 肉类食品工艺学[M]. 北京: 中国商业出版社, 1992.

    Min L J. Meat Technology[M]. BeiJing: China Commerce and Trade Press, 1992.
    [21] Bertram H C, Andersen H J, Karlsson A H. Comparative study of low-field NMR relaxation measurements and two traditional methods in the determination of water holding capacity of pork[J]. Meat Sci,2001,57(2):125−132. doi:  10.1016/S0309-1740(00)00080-2
    [22] 李春, 张录达, 任发政, 等. 利用低场核磁共振研究冷却条件对猪肉保水性的影响[J]. 农业工程学报,2012,28(23):243−249. [Li C, Zhang L D, Ren F Z, et al. Study on different chilling factors influencing water-holding capacity of pork based on low-field nuclear magnetic resonance(LF-NMR)[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(23):243−249.
    [23] Sánchez-Valencia J, Sánchez-Alonso I, Martinez I, et al. Estimation of frozen storage time or temperature by kinetic modeling of the Kramer shear resistance and water holding capacity (WHC) of hake (Merluccius merluccius L.) muscle[J]. Journal of Food Engineering,2014,120(1):37−43.
    [24] Kominami Y, Watanabe M, Suzuki T. Effects of postmortem physiological changeson ice crystal morphology in the fish muscle tissue[J]. Trans Jsrae,2014,31(3):47−56.
    [25] Maureen D, Sánchez-Alonso I, Guillaume D, et al. LF1 HNMR T2 relaxation rate as affected by water addition, NaCl and pH in fresh, frozen and cooked minced hake[J]. Food Chemistry,2019,277:229−237. doi:  10.1016/j.foodchem.2018.10.106
    [26] 沈春蕾, 张小利, 赵金丽, 等. 糖醇对冻藏南美白对虾的品质保障作用[J]. 包装工程,2019,40(1):15−23. [Shen C L, Zhang X L, Zhao J L, et al. Effect of sugar alcohols on the quality of shrimp (Litopenaeus vannamei) during Frozen Storage[J]. Packaging Engineering,2019,40(1):15−23.
    [27] 曾俊杰, 熊光权, 付晓燕, 等. 冻藏过程中多糖对肌原纤维蛋白化学作用力的影响[J]. 食品科技,2018,43(6):274−281. [Zeng J J, Xiong G Q, Fu X Y, et al. Effects of different polysaccharides on chemical force of myofibrillar proteins during frozen storage[J]. Food Science and Technology,2018,43(6):274−281.
    [28] Cabral A R, Blackmon T L, Miller R K, et al. Relationships between fatty acid composition, trained panel descriptors, and volatile aroma compounds of ground beef patties of brisket, flank and plate with 10%, 20%, and 30% total fat[J]. Journal of animal science,2017,95(3):183−183.
    [29] Wang J, Xu L, Xu Z, et al. Liquid chromatography quadrupole time-of-flight mass spectrometry and rapid evaporative ionization mass spectrometry were used to develop a lamb authentication method: A preliminary study[J]. Foods,2020,9(12):125−129.
    [30] Gao J, Yang P, Cui Y, et al. Identification of metabonomics changes in longissimus dorsi muscle of finishing pigs following heat stress through LC-MS/MS-based metabonomics method[J]. Animals (Basel),2020,10(1):19−23.
    [31] 丛艳君, 薛文通. 活性蛋白质和肽的制备及在功能食品中的应用[M]. 北京: 中国轻工业出版社, 2011.

    Cong Y J, Xue W T. Preparation of active proteins and peptides and their application in functional foods[M]. Beijing: China Light Industry Press, 2011.
    [32] Burgess C. Topical vitamins[J]. Journal of Drugs in Dermatology,2008,7(7):S2−S6.
    [33] Johnston J E, Sepe H A, Miano C L, et al. Honey inhibits lipid oxidation in ready-to-eat ground beef patties[J]. Meat Science,2005,70(4):627−631. doi:  10.1016/j.meatsci.2005.02.011
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  21
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 网络出版日期:  2021-08-03
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。